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Information erasure in copolymers
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Information erasure at the molecular scale during the depolymerization of copolymers is shown to
require a minimum entropy production in accordance with Landauer’s principle and as a consequence
of the second law of thermodynamics. This general result is illustrated with an exactly solvable
model of copolymerization, which also shows that the minimum entropy production that is possible
for a specific molecular mechanism of depolymerization may be larger than the minimum required
by Landauer’s principle.
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Introduction. Landauer’s principle, according to which erasing information dissipates energy [1–5], plays a central
role in the thermodynamics of information processing. Recently, these topics have been the focus of theoretical and
experimental studies in different systems [6–17]. In the present letter, our purpose is to consider the erasure of the
information contained in copolymers undergoing depolymerization. Copolymers form natural supports of information
at the molecular scale. Information can be processed, transmitted, or erased by attachment or detachment of the units
composing copolymers. These physicochemical mechanisms are ruled by the laws of kinetics and thermodynamics.
In previous work, we established the existence of a fundamental link between thermodynamics and the information
contained in the sequence of a growing copolymer [18, 19]. Here, our aim is to show that Landauer’s principle is
satisfied during the depolymerization of a copolymer. This result is illustrated in the case of a class of simple models
[19].

Depolymerization as well as polymerization is considered as a Markovian stochastic process for a single copolymer
in a solution containing monomers of M different species. The surrounding solution is supposed to be large enough to
constitute a reservoir where the concentration of monomers remains constant during the whole process. The monomers
may randomly attach or detach at one end of the copolymer, its other end being inert. Whether the copolymer grows
or depolymerizes is controlled by the concentrations of monomers. The speed of these processes is also determined by
the values of the rate constants of attachment or detachment for every monomer species m ∈ {1, 2, ...,M}.
Stochastic depolymerization of single copolymers. For the present considerations, the copolymer is described as a

sequence of monomers ω = m1m2 · · ·ml with mj ∈ {1, 2, ...,M} and its length l = |ω|. The copolymer is supposed to
be long enough for the statistical properties of the sequence ω to be well defined. The attachment and detachment of
a monomer m = ml+1

m1m2 · · ·ml + m
W (ω,ωm)



W (ωm,ω)

m1m2 · · ·mlm (1)

proceeds at the rates W (ω, ω′) and W (ω′, ω) with ω′ = ωm. The time evolution of the probability Pt(ω) that the
copolymer has the sequence ω at the current time t is ruled by the master equation [20–23]

dPt(ω)

dt
=
∑
ω′

[Pt(ω
′)W (ω′, ω)− Pt(ω)W (ω, ω′)] . (2)

Often, copolymers grow or shrink at constant average speed

v =
d〈l〉t
dt

=
d

dt

∑
ω

|ω|Pt(ω) (3)
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in regimes of steady growth or depolymerization. In such regimes, the probability to find a sequence ω at the current
time t can be assumed to factorize as

Pt(ω) ' pt(l)µl(ω) (4)

into the probability that the copolymer has the length l = |ω| at the time t and the stationary probability distribution
µl(ω) of its possible sequences, which is normalized according to

∑
ω:|ω|=l µl(ω) = 1 [24, 25]. Equation (4) is the

leading term of an expansion involving extra terms describing what happens around the growing or shrinking end of
the copolymer. Since the probability in these extra terms is concentrated near the end of the copolymer, they do not
contribute to the quantities that are defined per monomer by averaging over the total length of the copolymer. During
copolymer growth, the sequence that is synthesized has a composition that is self-generated by the process so that the
stationary distribution µl(ω) is given as the solution of the master equation (2) in terms of the monomer concentrations
and the rate constants [18, 19]. In the case of depolymerization, the initial sequence that is introduced in the solution
is characterized by an arbitrary probability distribution µ̄l(ω) because the copolymer has been synthesized under
conditions different from the ones in the solution under observation. The initial copolymer may have a Bernoulli or
correlated random sequence. It may also contain a message crypted in a seemingly random sequence.
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FIG. 1: Space-time plot of the depolymerization process of a random copolymer composed of two monomers A and B generated
by a Bernoulli process of equal probabilities µA = µB = 0.5. The transition rates are given by W (ω, ωm) = κ+m[m] and
W (ωm,ω) = κ−m for m = A,B with the rate constants κ+A = κ+B = 1, κ−A = 10−3, and κ−B = 2×10−3. The concentrations
are taken as [A] = 3× 10−4 and [B] = 5× 10−4.
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An example of depolymerization is depicted in Fig. 1. The initial copolymer is composed of two monomers forming
a Bernoulli random sequence with equal probabilities. The stochastic process is simulated by Gillespie’s algorithm
[26, 27]. The concentrations are such that detachments occur at a higher rate than attachments so that the copolymer
shrinks. We observe that depolymerization is not monotonous since transient growth phases of different compositions
happen at random. Every transient growth phase lasts for a finite time and elongates the copolymer by short random
sequences that are eventually decomposed. As a result, and in contrast to models of information erasure considered
in the literature, the sequence to be erased is not fixed, but changes due to the fluctuations in monomer insertions
and removals. If the sequence has a finite initial length l0, the depolymerization at the constant average speed (3)
stops after a lapse of time ∆t ' l0/v when the copolymer is completely decomposed. In order to characterize the
dynamical properties in the regime of steady depolymerization, the copolymer is assumed to be arbitrarily long so
that decomposition proceeds endlessly.

Thermodynamics of depolymerization. For a solution at given pressure and temperature T , opposite transition rates
are related by

W (ω, ω′)

W (ω′, ω)
= exp

G(ω)−G(ω′)

kT
, (5)

where G(ω) is the free enthalpy or Gibbs free energy of a single copolymer chain ω and k is Boltzmann’s constant [23].
The existence of thermodynamic quantities associated with a copolymer chain of sequence ω supposes a separation
of time scales between the short time scale of every attachment or detachment event and the long time scale of the
copolymer dwelling in the sequence ω until the next event. Under this assumption, the enthalpy H(ω) and the entropy
S(ω) can be defined similarly and they are related by G(ω) = H(ω)− TS(ω).

Since the copolymer has the probability Pt(ω) to have the sequence ω at the current time t, its total entropy is
given by

St =
∑
ω

Pt(ω)S(ω)− k
∑
ω

Pt(ω) lnPt(ω) , (6)

where the first term is the statistical average of the entropy S(ω) of the copolymer with the sequence ω and the
second term is the contribution of the statistical distribution over the different possible sequences {ω} observed at
the current time t [28].

In this framework, we showed elsewhere [18, 19] that the thermodynamic entropy production is given by the following
expression:

1

k

diS

dt
= v

(
− g

kT
+D

)
≥ 0 , (7)

where v is the average speed (3), g is the average free enthalpy per monomer

g = lim
l→∞

1

l

∑
ω:|ω|=l

µl(ω)G(ω) , (8)

and

D = lim
l→∞

−1

l

∑
ω:|ω|=l

µl(ω) lnµl(ω) ≥ 0 (9)

is the disorder per monomer in the ensemble of copolymer sequences. The entropy production (7) is always non-
negative by virtue of the second law of thermodynamics.

In the case of depolymerization, the speed is negative, v < 0, and the non-negativity of entropy production (7)
implies that

g ≥ kT D . (10)

Here, g is the free enthalpy per monomer (8) that is consumed to depolymerize the copolymer and D is the disorder
per monomer (9) in the initial copolymer that is dissolved during depolymerization. We notice that the inequality
(10) holds between quantities defined in terms of the stationary probability distribution µl(ω).

Information erasure. Now, we suppose that the copolymer has initially the given sequence ω̄. The initial probability
is thus given by Pt=0(ω) = δω,ω̄. If depolymerization proceeds at a constant speed (3), the probability µl(ω) takes
the unit value for the sequence ω = ω̄ restricted to the length l and zero otherwise. The random transient growths
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of the copolymer contribute by a correction that is concentrated near the end of the copolymer where Pt(ω) 6= δω,ω̄.
As long as the extension of these transient growths is finite, they have negligible contributions for the arbitrarily long
remaining sequence and the disorder (9) is vanishing, D = 0. Besides, the free enthalpy per monomer (8) takes a
value given by the statistical average ḡ = liml→∞G(ω̄l)/l where ω̄l denotes the restriction of the initial sequence ω̄ to
the length l. Therefore, the thermodynamic entropy production is given by

1

k

diS

dt
= −v ḡ

kT
≥ 0 , (11)

where the speed v is negative because the copolymer decomposes.
On the other hand, an arbitrarily long sequence ω̄ can be characterized by the occurrence frequencies of singlets

mj , doublets mjmj+1, triplets mjmj+1mj+2, etc.:

µ̄1(m) , µ̄2(mm′) , µ̄3(mm′m′′) , . . . . (12)

These frequencies define a probability distribution that characterizes all the statistical properties of the copolymer
undergoing depolymerization. In particular, the free enthalpy per monomer ḡ can be obtained using Eq. (8) in terms
of the frequencies (12). Similarly, the information content of the sequence ω̄ – measured in nats per monomer – can
be characterized by the Shannon information per monomer given by

Ī∞ = lim
l→∞

Īl , (13)

with

Īl = −1

l

∑
ω:|ω|=l

µ̄l(ω) ln µ̄l(ω) ≥ 0 . (14)

As long as the statistical properties of the single copolymer under depolymerization are fully characterized by the
probability distribution µ̄l(ω), its free enthalpy per monomer has the same value as in the corresponding statistical
ensemble where the copolymers have a disorder per monomer equal to the quantity (13). But, we have just shown
with Eq. (10) that the free enthalpy per monomer is bounded from below by the disorder per monomer multiplied by
the thermal energy kT :

ḡ ≥ kT Ī∞ . (15)

Therefore, the depolymerization of a copolymer ω̄ containing an amount of information equal to Ī∞ nats per monomer
requires the minimum dissipation rate

1

k

diS

dt
≥ −v Ī∞ ≥ 0 , (16)

which is the manifestation of Landauer’s principle at molecular scale [1–5, 9]. We notice that Eq. (16) constitutes a
general lower bound on the dissipation required to decompose the copolymer. Accordingly, a thermodynamic efficiency
of depolymerization can be introduced as

0 ≤ η ≡ kT Ī∞
ḡ

≤ 1 . (17)

For a given depolymerization mechanism, the minimum dissipation is actually determined by the dependence of the
reaction rates on the sequence at the end of the copolymer, as illustrated in the following example.

Simple model of depolymerization. The main features of our result (16) can already be illustrated with a simple model
of copolymerization processes [19]. This model supposes that the attachment of monomer species m ∈ {1, 2, ...,M}
proceeds at the transition rate W (ω, ωm) = κ+m[m], where [m] denotes the concentration of the monomer m in the
surrounding solution, and the corresponding detachment at the rate W (ωm,ω) = κ−m. By Eq. (5), the free enthalpies
of the sequences ω and ωm are related by

G(ωm) = G(ω)− kT ln
κ+m[m]

κ−m
. (18)

Since the rates of the present model only involve the last monomer that is detached or attached to the copolymer,
the average free enthalpy per monomer is given by

ḡ = −kT
∑
m

µ̄1(m) ln
κ+m[m]

κ−m
, (19)



5

0

0.0005

0.001

0.0015

0.002

10−6 10−5 10−4 10−3 10−2

µ
Α

 = 0

µ
Α
 = 0.25

µ
Α

 = 0.5

µ
Α

 = 0.75

µ
Α

 

= 1

−
v

[A]

(a)

0

0.0005

0.001

0.0015

0.002

10−6 10−5 10−4 10−3 10−2

[B] = 1.5 10−3

[B] = 10−3

[B] = 5 10−4

[B] = 10−4

[B] = 10−5

−
v

[A]

(b)

FIG. 2: Depolymerization speed versus the concentration [A]: (a) for Bernoulli sequences of different probabilities µA at the
concentration [B] = 5×10−4; (b) for different values of the concentration [B] at the probability µA = 0.5. The initial copolymer
is generated as a Bernoulli sequence of probabilities (µA, µB = 1 − µA) and length l = 5 × 105. The rate constants have the
values κ+A = κ+B = 1, κ−A = 10−3, and κ−B = 2 × 10−3. The symbols depict the results of numerical simulations with
Gillespie’s algorithm [26, 27] and the solid lines the predictions of formula (20) with the maximal speed (21).
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FIG. 3: Contour plot in the concentration space ([A], [B]) of the free enthalpy per monomer dissipated during depolymerization
with the rate constants κ+A = κ+B = 1, κ−A = 10−3, and κ−B = 2 × 10−3 for a copolymer of composition (a) µ̄A = 0.25;
(b) µ̄A = 0.5; (c) µ̄A = 0.75. The dot is the point (26) of minimum dissipation ḡ = kT Ī1. The contour lines are taken at the
values ḡ = xkT Ī1 with x = 1.5, 2, 2.5, 3, .... The dashed lines show the points (28) where the dissipation is minimum at fixed
value of the speed v.

which is non-negative ḡ ≥ 0 if the surrounding solution decomposes the chain and erases its information content. The
decomposition speed is given by

v = −vmax

(
1−

∑
m

κ+m[m]

κ−m

)
≤ 0 , (20)

where

vmax =
1∑

m [µ̄1(m)/κ−m]
(21)

is the absolute value of the maximal decomposition speed, achieved when all the concentrations vanish, [m] = 0.
The formula (20) is derived as follows. Fluctuations make the copolymer randomly shrink or grow. Starting from

a given monomer m, the growth phase will last for a random duration Tm before the copolymer shrinks enough to
remove that specific monomer. The important observation is that future growth or shrinking phases are independent
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once this original monomer is removed. Therefore, the speed will be given by

v = − 1∑
m µ̄1(m)〈Tm〉

, (22)

where 〈Tm〉 is the mean time before a given monomer m at a given location is removed from the chain. This mean
time is obtained by a first-passage calculation [29, 30] giving

〈Tm〉 =
1

κ−m

(
1−

∑
m′

κ+m′ [m
′]

κ−m′

) . (23)

Inserting this expression into Eq. (22) leads to the formula (20) with Eq. (21). To decompose the chain and erase its
information content, the concentrations of the monomers should thus satisfy the condition∑

m

κ+m[m]

κ−m
< 1 (24)

so that the speed (20) is negative. Consequently, ln(κ+m[m]/κ−m) < 0 for every m ∈ {1, 2, ...,M}, so that the free
enthalpy per monomer (19) is indeed non-negative.

Figure 2 shows the agreement between the predictions of Eq. (20) and numerical simulations for depolymerization
of a copolymer composed of two monomers, m = 1 ↔ A and m = 2 ↔ B. We also observe that the decomposition
speed vanishes at the limit of the condition (24). This limit does not depend on the initial composition, as seen in
Fig. 2a. The maximal speed is asymptotically reached for vanishing concentrations, as Fig. 2b demonstrates.

The free enthalpy per monomer (19) that is consumed during depolymerization is depicted in Fig. 3 as a contour
plot in the plane of the concentrations ([A], [B]) for three different initial compositions µ̄m = µ̄1(m) of the copolymer.
Depolymerization occurs if κ+A[A]/κ−A + κ+B[B]/κ−B < 1. The minimum dissipation is given by ḡ = kT Ī1, where

Ī1 = −
∑
m

µ̄1(m) ln µ̄1(m) ≥ 0 (25)

is the information per monomer (14) determined by the frequencies µ̄1(m) of singlets in the sequence. We notice
that Ī1 ≥ Ī∞ because the information (13) takes a lower value than Ī1 if there are statistical correlations between
successive monomers in the sequence. The minimum dissipation ḡ = kT Ī1 is reached for the concentrations

[m] =
κ−m
κ+m

µ̄1(m) (26)

marked by a dot in Fig. 3. At these concentrations, the decomposition speed vanishes as well as the thermodynamic
entropy production (11).

The minimum of the free enthalpy per monomer (19) for a fixed decomposition speed (20) is obtained by using a
Lagrange multiplier, which gives

ḡ∗ = kT Ī1 − kT ln

(
1 +

v

vmax

)
. (27)

This value is reached at the concentrations

[m] =
κ−m
κ+m

µ̄1(m)

(
1 +

v

vmax

)
(28)

marked by a dashed line in Fig. 3.
Reciprocally, for a fixed free-enthalpy consumption ḡ, the fastest erasure speed is given by

v∗ = −vmax

[
1− exp

(
Ī1 −

ḡ

kT

)]
, (29)

which is obtained by inverting Eq. (27). This speed vanishes at the minimum dissipation ḡ = kT Ī1 and approaches
the maximal speed −vmax exponentially as the allowed dissipation increases. This behavior is seen in Fig. 4 where
a comparison is made between the result (29) and numerical simulations at the concentrations (28). We observe
that the threshold of minimum dissipation is indeed given by the information (25). Figure 5 plots the speed versus
the dissipation for different sequences of the two monomers A and B, but all with the same frequencies µ̄A and
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FIG. 4: Absolute value of the fastest decomposition speed versus the dissipation per monomer ḡ/kT during depolymeriza-
tion with the rate constants κ+A = κ+B = 1, κ−A = 10−3, and κ−B = 2 × 10−3. The initial copolymers are generated
as Bernoulli sequences of probabilities (µA, µB = 1 − µA) and initial lengths l = 5 × 105. Plotted data are taken at the

concentrations (28) linked by
κ+A[A]

κ−AµA
=
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≥ 1. Minimum dissipation occurs at Ī1 ' 0.325, 0.500, 0.611, 0.673, 0.693 for

µA = 0.1, 0.2, 0.3, 0.4, 0.5, respectively. The symbols are the results of numerical simulations with Gillespie’s algorithm [26, 27]
and the solid lines the prediction of Eq. (29).
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FIG. 5: Absolute value of the decomposition speed versus the dissipation per monomer ḡ/kT during depolymerization with the
rate constants κ+A = κ+B = 1, κ−A = 10−3, and κ−B = 2× 10−3 for different initial copolymers all with the same frequencies
µ̄A = µ̄B = 0.5 and singlet information Ī1 = ln 2, but generated as a Bernoulli sequence composed of singlet probabilities
µA = µB = 0.5 and information Ī∞ = ln 2 (open squares), of doublet probabilities µAA = µBB = 0.5 and information
Ī∞ = (ln 2)/2 (open circles), of triplet probabilities µAAA = µBBB = 0.5 and information Ī∞ = (ln 2)/3 (pluses), and as a
periodic sequence ABABABAB... of information Ī∞ = 0 (crosses). The minimum dissipation is determined by Ī1 = ln 2 for

every copolymer. The concentrations are varied while remaining linked by
κ+A[A]

κ−AµA
=

κ+B[B]

κ−BµB
. The symbols are the results of

numerical simulations with Gillespie’s algorithm [26, 27], the solid line is the prediction of Eq. (29), and the dashed line the
asymptotic maximum speed (21).

µ̄B. The singlet information per monomer (25) is the same for the different sequences, although the information
(13) differs among them. Since Ī1 ≥ Ī∞, Eq. (16) constitutes a general lower bound, which may not be reached for
specific depolymerization mechanisms. For a molecular mechanism involving only singlets, as in the present model,
the efficiency (17) is maximal in the limit of vanishing decomposition speed where it takes the value

η0 =
Ī∞
Ī1
≤ 1 , (30)

for a given copolymer characterized by the information (13) contained in the whole sequence and the information (25) in
the frequencies µ̄1(m) of the singlets. At finite erasure speed v, the maximal efficiency is given by η∗(v) = kT Ī∞/ḡ

∗(v).
It decreases with the speed until it vanishes as a cusp located at minus the maximal speed (21).
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Conclusions. In the present Letter, Landauer’s principle is shown to hold at the molecular scale during the de-
polymerization of copolymers with information contained in their monomer sequence. Depolymerization is a physico-
chemical process responsible for the erasure of information at the nanoscale of individual molecules. This process is
the reverse of copolymerization, which can generate or transmit information under nonequilibrium conditions [18, 19].
Our analysis shows that the depolymerization of an initial copolymer with some information content Ī∞ requires
in general the minimum of thermodynamic entropy production given by Eq. (16). This general result is illustrated
with an exactly solvable model of copolymerization. For this model, the decomposition speed has been obtained
analytically, as well as the free enthalpy dissipated per monomer during depolymerization. Interestingly, the analysis
of this model shows that the minimum dissipation depends on the specific mechanism taking place at the molecular
level and may be larger than the general lower bound (16). More realistic models of copolymerization can be studied
by similar methods that we hope to report on in a future publication.
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