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Fluctuation theorems for capacitively coupled electronic currents
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The counting statistics of electron transport is studied theoretically in a system with two capaci-
tively coupled parallel transport channels. Each channel is composed of a quantum dot connected
by tunneling to two reservoirs. The nonequilibrium steady state of the system is controlled by
two affinities or thermodynamic forces, each one determined by the two reservoirs of each channel.
The status of a single-current fluctuation theorem is investigated starting from the fundamental
two-current fluctuation theorem, which is a consequence of microreversibility. We show that the
single-current fluctuation theorem holds in the limit of a large Coulomb repulsion between the two
parallel quantum dots, as well as in the limit of a large current ratio between the parallel channels.
In this latter limit, the symmetry relation of the single-current fluctuation theorem is satisfied with
respect to an effective affinity that is much lower than the affinity determined by the reservoirs.
This back-action effect is characterized quantitatively.

I. INTRODUCTION

Away from equilibrium, fluctuating currents flow
across small open quantum systems such as quantum
dots exchanging electrons with reservoirs. Advances in
nonequilibrium statistical mechanics have shown that
the current fluctuations obey symmetry relations fol-
lowing from microreversibility and known as fluctuation
theorems.!® They have been proved in different contexts
and, especially, for open quantum systems and the full
counting statistics of electron transport.”~'7 In this con-
text, fluctuation theorems relate the probabilities of op-
posite random values of the currents to the potential dif-
ferences driving the mean values of the currents. In elec-
tronic circuits, these potential differences play the role
of thermodynamic forces also called affinities.!®1° Fluc-
tuation theorems hold in nonlinear transport regimes, in
particular, for the description of the Coulomb drag effect
in capacitively coupled quantum dots.'®

Remarkably, modern technology is able to perform
the bidirectional counting of single-electron transfers in
quantum-dot circuits, allowing the experimental verifica-
tion of the fluctuation theorem.2® In these experiments,
the quantum-dot (QD) circuit is monitored by a parallel
circuit made of a quantum point contact (QPC). Because
of electrostatic interactions, the electronic occupancy of
the quantum dots modifies the mean value of the QPC
current, enabling the measurement of the QD electronic
state in real time. The surprise has been that, within
experimental error, the bidirectional counting of the QD
current obeys the symmetry relation predicted by the
fluctuation theorem but with respect to an affinity about
one order of magnitude smaller than the potential dif-
ference driving the QD circuit.?! This discrepancy has
revealed the importance of the interaction between the
QD and QPC circuits. Indeed, the QPC current is typ-
ically 107-10% times larger than the QD current in such

experiments so that the QPC can act as a quasi-classical
detector measuring the quantum state of the QDs. As a
consequence, the whole system composed of the two par-
allel circuits is quite far from equilibrium and the shot
noise in the QPC current has a significant back action
onto the small QD current. In Ref. 21, this back action
was analyzed in terms of the so-called P(FE) theory?? by
fitting experimental data to a simple Lorentzian in or-
der to take into account the global effect of the QPC
noise onto the QD tunneling rates, an approach that has
been extended in Refs. 23 and 24. These studies leave
open the fundamental understanding of the back action
in terms of the microscopic Hamiltonian describing the
interaction between the parallel circuits and the role of
this interaction in the reduction of the effective affinity.
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FIG. 1: Schematic representation of two quantum dots in
parallel. Each quantum dot is coupled to two reservoirs of
electrons. Moreover, both quantum dots influence each other
by the Coulomb electrostatic interaction.

In the present paper, we address this issue by con-
sidering a system composed of two capacitively coupled
parallel transport channels, each containing a single QD
in contact with two electron reservoirs.1%2>28 The two
parallel transport channels are only coupled by the elec-
trostatic Coulomb repulsion between the electrons occu-
pying the two QDs so that there is no electron trans-
fer between both channels (see Fig. 1). The two cur-
rents flowing in parallel across this device are driven by



two affinities defined by the potential differences on both
QDs. In the analogy with the aforementioned experi-
ments, the circuit No.1 would play the role of the QD
and the circuit No. 2 the role of the QPC detector. The
fluctuations of the two currents obey a bivariate fluctu-
ation theorem, which is the fundamental consequence of
microreversibility. Under general conditions, this two-
current fluctuation theorem does not imply the existence
of a single-current fluctuation theorem for the main QD
current monitored by the secondary circuit. Here, we
show that the single-current fluctuation theorem only
holds in the limit where the current in the secondary cir-
cuit is much larger than the one in the main circuit (or
vice versa). However, the symmetry of the single-current
fluctuation theorem does not hold with respect to the
potential difference on the main circuit but to an effec-
tive affinity that depends strongly on the electrostatic
interaction between both circuits. In this way, our anal-
ysis provides an understanding of these features in terms
of the basic parameters of the system Hamiltonian and
clearly shows that the effective affinity can vary by one
order of magnitude or more due to the back action of one
circuit onto the other.

Furthermore, our analysis leads to the evaluation of the
entropy production in the electronic device. The fluctua-
tion theorem has as a consequence the non-negativity of
the entropy production and is thus compatible with the
second law of thermodynamics. The directionality due to
the nonequilibrium driving of the device is characterized
by the probability distributions of the current fluctua-
tions, by the mean values of the currents, and also by
the entropy production. The analysis based on the fluc-
tuation theorem allows us to understand the connections
between these complementary and fundamental aspects
of such nonequilibrium electronic devices.

The paper is organized as follows. In Sec. II, the
Hamiltonian model is presented and the master equation
ruling the occupancies of the QDs is derived for QDs
weakly coupled to the reservoirs within the Markovian
and secular approximations. Section III is devoted to
the full counting statistics of the two interacting currents,
for which the fundamental fluctuation theorem is estab-
lished. Moreover, the connection between the fluctua-
tion theorem and the entropy production of the device
is discussed. In Sec. IV, we first consider the limit of
a large Coulomb repulsion between the QDs, in which
case a single-current fluctuation theorem is obtained but
without modification of the effective affinity contrary to
the experimental observation. In Sec. V, the limit is then
considered where the current in one circuit is much larger
than the one in the other circuit. It is in this limit that
the single-current fluctuation theorem is obtained with
an important modification of the effective affinity with
respect to which the symmetry relation of the single-
current fluctuation theorem holds. In Sec. VI, these
effects are demonstrated numerically with the model for
parameter values corresponding to typical experimental
conditions. We analyze the dependence of the effective

affinity on the parameters of the Hamiltonian model and,
especially, on the electrostatic interaction between both
circuits. Conclusions are drawn in Sec. VII.

II. CAPACITIVELY COUPLED PARALLEL
TRANSPORT CHANNELS

A. The Hamiltonian

The vehicle of our study is the Hamiltonian model con-
sidered in Ref. 25. Each transport channel (o = 1 or
a = 2) is composed of one quantum dot with a single
energy level e, for the electron. This level is either occu-
pied or empty and the spin degree of freedom is ignored.
Moreover, the quantum dots are capacitively coupled by
electrostatic repulsion if both are occupied. This electro-
static repulsion is taken into account by an Anderson-
type term with the parameter U. The parameter U is
thus the energy contribution of the Coulomb repulsion
when both quantum dots are occupied by an electron.
The system Hamiltonian is therefore given by

Hs = e didy + ey dbdy + Udldydbds (1)

where d, and df, denote the annihilation and creation
operators of an electron on the QD labeled by o = 1, 2.
This Hamiltonian is diagonalized in the four-state ba-
sis {|00), [10),|01),|11)} with the corresponding energy
eigenvalues {0, €1, €2,€1 + €3 + U}.

Each QD is in tunneling contact with two reservoirs
on its left- and right-hand sides (see Fig. 1). The system
has thus four reservoirs j = 1L, 1R, 2L, 2R, which are de-
noted as j = ai by the label o = 1,2 of the channel and
the side ¢ = L, R where the reservoir stands. The Hamil-
tonian of all the reservoirs can be expressed in terms of
the Hamiltonians H; of the individual reservoirs as

Hg = ZH]‘ = Z Z €k C;kcjk (2)
J Jj k

where ¢, and c;k denote the annihilation and creation
operators of electrons in the corresponding states of the
reservoirs. These ones are supposed to be much larger
than the system itself so that the eigenvalues {e;i}
of each reservoir form a very dense spectrum which is
quasi continuous and characterized by a density of states
Dj(e) = >, 6(e — €jr). The operator giving the elec-
tron number in the reservoir j is furthermore defined as
Nj=>% C}kcjk'

The tunneling Hamiltonian establishing the interaction
between the QDs and the reservoirs has the form:

Hgr = Z Z Z Laik d(];cocik +H.c. (3)
a=1,2:=L,R k

where we have specified here the channels and the reser-
voirs by writing 7 = «ai. The effect of the electrostatic
interaction on the energy barriers between the quantum



dots and the reservoirs could be taken into account by
including corresponding capacitances, as considered in
Ref. 16. If the capacitances between the QDs and the
reservoirs are included, the position of the energy lev-
els in the QDs is in general shifted when a voltage is
changed in the reservoirs. However, our primary interest
here is focused essentially on the rate processes taking
place in the QDs. For this purpose, we may already use
the Hamiltonian model of Ref. 25 where the capacitances
between the QDs and the reservoirs are absent.
Finally, the total Hamiltonian is defined as the sum:

H = Hs + Hg + Hsr (4)

We notice that the electron number operators of each
transport channel

Na = d];da + Z Z C];ikcozik

i=L,R k

a=1,2 (5

separately commutes with the total Hamiltonian
[Hle]:[HvNQ}:O (6)

so that the electron number is conserved on each trans-
port channel and there is no electron exchange between
the channels. In contrast, the number operators of the
reservoirs N; = Ny; with @ = 1,2 and + = L, R do not
commute with the total Hamiltonian unless the tunneling
amplitudes are equal to zero.

B. The master equation

Initially, the reservoirs are in grand-canonical equilib-
rium states characterized by the chemical potentials p;
with j € {1L,1R,2L,2R} and a uniform temperature
T. We denote by 3 = (kgT)~! the inverse temperature
with the Boltzmann constant kg. At the same time, the
QDs are in an arbitrary statistical mixture pg(0). More-
over, a measurement is performed at the initial time that
determines the numbers m; and ms of electrons in the
reservoirs 7 = 1L and 7 = 2L. Consequently, the ini-
tial density matrix of the total system has the factorized
form:

U sm,—u. N,
pm1m2 (O) = ps(o) H ? € B(H] H]NJ) 6N1L,m1 6N2L,m2
=y
J

(7)
where =; denotes the partition function of the grand-
canonical ensemble for the reservoir j. The Kronecker
symbols d ,, take the unit value if N = m and zero oth-
erwise and thus they play the role of projection operators
on states with a fixed number of particles. Thereafter,
the density matrix of the total system evolves in time
according to the Landau-von Neumann equation

i at pm1m2 (t) = [H> pm1m2 (t)] (8)

in units where i = 1. The following normalization con-
dition is satisfied by the initial density matrix (7) and
preserved by the time evolution (8):

Z Tt prmyms, (t) = 1 (9)

my,ms2z

where Tr denotes the trace over all the degrees of freedom
of the total system.

Since we are interested in the occupancies of the QDs
and the numbers of electrons transferred between the
reservoirs, we focus on the probabilities p,, ., (n1, n2) that
the QDs are in the quantum states {|v1v2)} with the oc-
cupancies 1 = 0,1 and v = 0, 1, while n; electrons have
been transferred from the reservoir j = 1L to the first
QD and ny electrons from the reservoir j = 2L to the
second QD between the initial time t = 0 and the time .
These probabilities can be defined in terms of the density
matrix of the total system according to

Praa(n,m2) = 3 T oy (8) 1) (0]

mi,ma
X 6N1L77”1—7L1 5N2L,m2—n2 (10)

which results from a second measurement at time ¢ count-
ing the numbers of transferred electrons.'?

We suppose that the two quantum dots are weakly
coupled to the reservoirs by small enough tunneling am-
plitudes {¢t;z} (with j = «ai) so that we may carry out
the Born perturbative approximation on the Landau-
von Neumann equation up to second order in the
tunneling amplitudes. We use the secular (or rotat-
ing wave) approximation and we take the Markovian
approximation.'?2931 As a consequence, the charging
and discharging transition rates of the QDs are respec-
tively given by

a; =T;f; (11)
a; =T;f; (12)
by =T;(1—f5) (13)
by =T;(1-f;) (14)
in terms of the Fermi-Dirac distributions
fi = T (15)
1+ eBlei—uy)
- 1

fi = (16)

1 4 eB(ei+U—ny)

where €; = €, for j = ai. The rate constants are given
at the second order of perturbation theory by

r; = 271'2 ZARICENT)
k
= 2nt;(e;)|*D;(e5) (17)
L =2m ) ltjul?d(e; +U — )
k

= 27[t;(e; + U)|>D;(e; + U) (18)



where the quantities t;(e) are the tunneling amplitudes
as a function of energy and D, (¢) is the density of states
of the reservoir j.

The total system is characterized by two sets of time
scales:

(1) The correlation times of the reservoirs: The cor-
relation time of the reservoir j can be estimated as

T;C) ~ Aejfl in terms of the width Ae¢; of the function

giving the charging rate a;(€) = 2x|t;(e)|?D;(e) fj(€) ver-
sus the energy e.
(2) The relaxation times induced by the electron ex-

changes with the reservoirs: TJ(R) ~T7h

which  justifies the wuse of the Markovian
approximation.??3% Moreover, since the perturba-
tive expansion is limited to second order, resonance
effects are neglected. Consequently, the thermal energy
should be supposed to be larger than the natural width
of the QD energy levels:32

ToL +Tor < ksT  a=1,2 (20)

Accordingly, the master equation for the probabilities

In consistency with the assumption of weak coupling,
D! poo(n1,n2)
we suppose that the correlation times are much shorter p1o(n1,n2)
than the relaxation times and that the secular approxi- p(ni,ne) = P01(n17n2) (21)
mation is performed by averaging the equation of motion i (nl’ ns)
over an intermediate time scale At such that ’
T;C) <At K T;R) (19)  takes the form
J
dip(ni,nz) = Ly + Lz) - p(n1, n2) (22)

with the matricial operators:

—alAL — A1R blL EATL + blR 0 0
L= | o Ef +air  —bip, —bir i 0 i B Af B (23)
0 0 7(11AL — A1R b1L7E1 +7b1R
0 0 aiL By +air —bin — bir
and
—a921, — A2R 0 b2L E;_ + b2R B R 0 B
l:z _ . 0 —a91, — AR 0 bo1, E;_ + bor (24)
asr, By + asr 0 —bor, — bor 0
0 aor, By + asr 0 —bor, — bar
[
where the step operators obey the master equation obtained by replacing the step
operators (25) by unity, £+ = 1, in the matricial opera-
. 0 .
BE = exp (ia ) (25) tors (23) and (24)
Mo

increase or decrease the numbers n, of transferred elec-
trons

Eét¢<na> = (b(na =+ 1) (26)

when applied to any function ¢(ng).3
We notice that the occupancy probabilities irrespective

of the numbers of transferred electrons defined as

+oo

+o00
PV1V2: Z Z py1u2(n1,n2) (27)

n]=—00 Na=—00

IIT. THE TWO-CURRENT FLUCTUATION
THEOREM AND ITS CONSEQUENCES

A. The cumulant generating function and the
affinities

In order to perform the counting statistics of the elec-
trons transferred from the left reservoirs to the quantum
dots, we introduce the cumulant generating function of
the currents in terms of the counting parameters {\,}



associated with each transport channel:

. 1
Q(/\l, )\2) = tliglo —; In <exp(—/\1n1 — /\2712)>t (28)

where the average

(X) = Z

Vi,V2,11,N2

Puviv, (n17n2)X (29>

is taken with respect to the probability distribution,
which is the solution of the master equation (22) at the
time ¢.

We notice that the cumulant generating function (28)
is given as the leading eigenvalue of the following eigen-
value problem:

is a four-by-four matrix with real elements that de-
pend on the counting parameters A. Since the functions
exp(A - n) are the eigenfunctions of the step operators
(25), the matrices L; and Ly are obtained by the follow-
ing substitutions

Er — e (32)

[e4

in Egs. (23) and (24), as can be checked by a straight-
forward calculation.

The four-by-four matrix L = L(X) obeys the symmetry

Lov=-Qv (30) M. LO)-M=LA-)\T (33)
where
L= e_)"n <L1 + [2) G+A'n = L1 + L2 (31) with
J
1 0 0
0 e Blei—pr) 0
M= 0 0 e—Ble2—p2r) 0 (34)
0 0 e*ﬁ(€1+62+U*#1R*H2R)

and the affinities A = (A;, A3) defined by

b aLb
Ay = In B2 g TLOIR g (L — pr)  (35)
biLair biLair
aor,b dorb
As =1In b2L ELL Pk (por, — por)  (36)
2LU2R bor,Gor

We notice that these affinities can also be obtained by
using Schnakenberg graph analysis.®3* These quantities
are the two independent thermodynamic forces able to
drive the system away from equilibrium. The fact that
there exists only two independent affinities although the
system contains four reservoirs is due to the existence
of the two constants of motion (6) given by the particle
numbers in the two transport channels.

If the system were fully connected, only the total par-
ticle number would be a constant of motion and there
would exist three independent affinities. More generally,
a system composed of r reservoirs and partitioned into
¢ disconnected but interacting transport channels has ¢
constant particle numbers and can be driven away from
equilibrium by r — ¢ independent affinities. Here, r = 4
and ¢ = 2 so that there is only » — ¢ = 2 independent
affinities.

As aforementioned, the cumulant generating function
is given by the leading eigenvalue of Eq. (30), i.e., by the

smallest root of the quartic characteristic polynomial:
det (L+Q1) =0 (37)

of the four-by-four matrix (31). Therefore, the symme-
try (33) implies that the cumulant generating function
also obeys this symmetry.>7 In this way, the fundamen-
tal result is proved that the cumulant generating function
satisfies the fluctuation theorem:

Q) =Q(A -} (38)
or
Q(A1,A2) = Q(A1 — A1, Az — X) (39)
in terms of the affinities A = (A, A2) given by Eqs. (35)
and (36).

An alternative expression of this fluctuation theorem
is that the probability

p(n17n2> = Z Pviv, (711, 712) (40)

for the transfer of n; particles in the circuit No.1 and
ng particles in the circuit No. 2 during the time interval
t obeys

p(nl, n2)

P t— 400
p(fnla 7”2)

(41)

~ exp(Ainy + Asns) for



Indeed, this expression implies Eq. (39) using the defi-
nition (28) of the cumulant generating function with the
average (29).5:12

In general, this two-current fluctuation theorem does
not imply any single-current fluctuation theorem unless
specific conditions are satisfied either by construction,3’
or in some particular limit, which is the case here, as
shown in the following sections.

B. The average currents and the response
coefficients

The average values of the particle currents are given in
terms of the generating function according to

_ 99
" D lyo

Ja (42)
for « = 1,2. As shown in Appendix A, these currents
can be expressed in terms of the probabilities (27) of
the four QD states in the nonequilibrium steady state
corresponding to the affinities (35) and (36) according
to:

Ji = a1,Pyo — bin Pio + @1.Po1 — bi P11 (43)
Jo = aor, Pog — bar, Po1 + Gor,Pio — bar, P11 (44)

These currents are nonlinear functions of the affinities,
which can be expanded in powers of the affinities in order
to identify the linear and nonlinear response coefficients:

Ja = Ja(AlvAZ)

1
= D LapAs+ 5D MapyAgA,
B Byy

1
+5 > NaprsAsAyAs+ - (45)
B,v,6

As a consequence of the fluctuation theorem (39), the
linear response coefficients L, g are given in terms of the
second derivatives of the generating function with respect
to the counting parameters and they thus obey the On-
sager reciprocity relations:

1 0%Q

Lop=Lgo=—7—c"t"
s 2 OXaOAg 1A=0,4=0

(46)
Similar relationships have been established for the non-
linear response coefficients.3¢

The average currents as well as the linear response co-
efficients can be calculated in terms of the characteris-
tic determinant (37) of the matrix (31) as shown in Ap-
pendix A. By using Eq. (A10), the Onsager coefficient
turns out to be proportional to

Lip o (T1iulir — Tinlir) (Tonlor — Torlar)  (47)

In general, the Onsager coefficient is thus non vanishing
and there is a phenomenon of Coulomb drag according

to which a current may be induced in a circuit at equilib-
rium if the other circuit is out of equilibrium, as shown
in Ref. 16.

However, the Onsager coefficient vanishes under the
condition that the rate constants of one circuit do not
depend on the Coulomb repulsion parameter U. In this
particular case, there is no Coulomb drag because

Jl(O,AQ) =0 and JQ(Al,O) =0 if Fj :fj

(48)
This property is also proved in the Appendix A. Equa-
tion (48) implies the vanishing of the Onsager coefficient
as well as the nonlinear response coeflicients allowing the
coupling of one current to the affinity of the other circuit:

Lio=Mi2 = Nig=--=0 and
Lyy =Myi1=Nogin=---=0 if T';=T, (49)

Nevertheless, these coefficients do not vanish in general.

C. The entropy production and the energy
dissipation

A further consequence of the fluctuation theorem (39)
is that the average currents (42) obeys the second law of
thermodynamics according to which the entropy produc-
tion is always non-negative.%'2 The entropy production
is the ratio between the total power dissipated in both
circuits and the temperature 7"

4 (1) 20 (50)
The power dissipated in each circuit is defined as the
product of the voltage V,, by the electric current I, =
eJ, where e is the electric charge of the particles: 11, =
Voly, with a = 1,2, This energy dissipation leads to
Joule heating in the linear regime. Since the affinities
are related to the voltages by

eV,
~ ksT

we have that the dissipated power in the circuit « is given
by

Aa

(51)

M, = ksT Ay Jo (52)

in terms of the corresponding affinity and mean current
Jo = im0 (ne)/t. Accordingly, the entropy produc-
tion of the system characterizes the energy dissipated
during the quantum measurement performed on one QD
by the current flowing in the other circuit playing the
role of the detector. We shall evaluate these quantities
under such specific conditions in the following sections.

IV. THE LARGE COULOMB REPULSION
LIMIT

In the limit where the Coulomb repulsion between both
QDs is strong, the coupling parameter U takes large val-



ues so that the charging rates of a second electron on the
two QDs vanish:
a; =0 for j=1L,1R,2L,2R if U=o00 (53)
As a consequence, the probabilities (10) and (27) that
the system is in the fourth state |11) also vanish:
P11 =0 if U=
(54)
In this limit, the occupancy of one QD is stopping the
current in the other QD. Therefore, the secondary circuit
has a non-vanishing current only when the QD No.1 is
empty and vice versa.

The cumulant generating function can thus be ob-
tained by considering the three-by-three matrix obtained
by removing the fourth row and column from the matrix
(31). In this case, the characteristic determinant (37) de-
pends on the counting parameters only in the following
combinations:

p11(n1,n2) =0 and

alelLe)‘l + alLblRe_M (55)
CLQRbQLe)\Q + anggRe_’\2 (56)
which remain invariant under the independent substitu-
tions Ay = A; — Ay and/or Ay = As — Ao with the affini-

ties (35) and (36). Consequently, we obtain the symme-
try relations:

Q(A1,A2) = Q(A1 — A1, A2)
=Q(M1, A2 — X)) = QA1 — A, Ay — X2)  (57)

if U = oo, which implies the single-current fluctuation
theorem:

Q(A1,0) = Q(A1 — A1,0)

but with the unmodified affinity (35). Therefore, this
limit cannot explain the modification of the affinity ob-
served in the experiments reported in Refs. 20 and 21.

if U=o0 (58)

V. THE LARGE CURRENT RATIO LIMIT

In counting statistics experiments,?%37 the secondary
circuit which is used to observe the occupancy of the
QD carries a current which is typically much larger than
the current in the QD by a huge factor 107-108. This
amounts to supposing that the rate constants of circuit
No. 2 are much larger than those of circuit No. 1:

I, Tir, [, Tir < Tor, Tor, Tor, Tar (59)

Under such circumstances, the relaxation times Tl(ZR) ~
Fl_il of the circuit No. 1 are much longer than the relax-
ation times 72(Z-R )~ I‘2_i1 of the circuit No. 2 and the mon-
itoring of the slow circuit by the fast one is performed
over a time scale At such that

<At <P (60)

instead of the time scale (19).

Our aim here is to obtain the cumulant generating
function for the counting statistics in the sole circuit No. 1
without measuring the current in the fast circuit No. 2,
as it is the case in Refs. 20 and 37. This amounts to
considering the two-current generating function (28) for
Ao = 0. Accordingly, we focus on the time evolution of
the probabilities defined by

+oo
pl/1(n1): Z Z pV1V2(n17n2) (61)

v2=0,1 no=—00

Since the electron transfers in the circuit No.2 are
much faster than in the circuit No. 1, the circuit No.2
can be supposed to be in a stationary state during the
whole period when the circuit No. 1 is in a given state.
Such stationary states conditional to the state v; of the
QD No. 1 are obtained by finding the zero eigenvectors of
the transition matrix (24) with E¥ = 1. The conditional
probabilities P, ,, that the QD No. 2 has the occupancy
vo provided that the QD No. 1 is in the state v are given
by

bo
Py = 62
o = (62)
ag
Py = 63
o= 2 (63
bo
= (6
az
P, = _ 65
(e (65)
with
a2 = a91, + G2R (66)
ba = ba1, + bar (67)
Gz = Gso1, + G2R (68)
by = bar, + bor (69)

Under the conditions (59), the probability that the sys-
tem is in the state |v112) and that ny electrons have been
transferred in the circuit No. 1 factorizes into the proba-
bility (61) and the probability of the occupancy vs of the
QD No. 2 conditioned to the occupancy vy:

Pryv, (nl) = Pv, (nl)PVz\Vl (70)

Substituting these relations into the master equation
(22) and summing over ns and vo, we get the master
equations for the probabilities p,, (n1) as follows:

drpo(n1) = — (GL + GR) po(n1) + (bLEl+ + bR) p1(n1)
(71)

Op1(n1) = (aLEf + aR) po(n1) — (bL + bR) pi(n1)
(72)



where
ar, = a1.Pojo + a1 Prjo (73)
ar = a1rFojo + a1rPrjo (74)
br = biLPoji + binPij (75)
br = bir Pop + bir Py (76)

as monitored by the fast circuit No. 2 over the time scale
(60).

Taking a solution of the form p,, (n1) ~ exp(A1n1—Qt)
for Egs. (71)-(72), the cumulant generating function (28)
with Ay = 0 has thus for an approximation the leading
eigenvalue of the matrix

are the charging and discharging rates of the first quan- L= ( _aLA_ ar  bret™ +bg ) (77)
tum dot averaged over the conditional stationary prob- are”™™ +ar  —bL —br
abilities of the second quantum dot. The master equa-
tions (71)-(72) rule the process in the slow circuit No.1  which is given by
|
Q()\l, 0) ~ % ar, + ar + by, + br — \/(CLL +ar — by, — bR)2 +4 (aLe*Al + GR) (bLeJr)‘l + bR):| (78)

in the limit (59) where the current in the second quantum
dot is much larger than in the first one. In this limit, the
generating function (78) obeys the single-current fluctu-
ation theorem:

Q(A\1,0) = Q(A; — A1, 0) (79)

with the effective affinity for the first quantum dot ob-
tained as

1‘11 =In aLbR

by (80)

in terms of the averaged rates (73)-(76). This constitutes
the main result of the present paper.

We notice that similar results hold in the other limit
where the circuit No.1 is much faster than the circuit
No. 2 because both circuits have the same structure and
are symmetrically coupled together through the Coulomb
repulsion of parameter U in Eq. (1).

The result (79) shows that the generating function of
the counting statistics in the slow QD No. 1 has the sym-
metry of a single-current fluctuation theorem under the
experimental conditions (59) but with respect to the ef-
fective affinity (80). This latter may differ by orders of
magnitude with respect to the affinity (35) driving the
circuit out of equilibrium. The reason for this modifica-
tion is the back action of the other circuit to which the
QD is capacitively coupled. Indeed, the charging and
discharging rates of the QD No. 1 are averaged over the
two possible states of the QD No.2 according to Egs.
(73)-(76) so that their effective values are modified by
the back action of the circuit No.2. This modification
of the transition rates is reminiscent of the influence of
environmental noises as described by the P(E) theory.??

In the following section, the dependence of the effective
affinity (80) on the applied voltages and other parame-
ters is investigated numerically under specific conditions,
showing the importance of the back-action effect.

[
VI. NUMERICAL RESULTS
A. Parameter values

In typical counting statistics experiments, the affini-
ties take quite large values because the voltages are large
with respect to the temperature. For instance, with the
voltages Vi = 300 puV, Vo = 800 pV, and the electronic
temperature 7' = 130 mK, the affinities are given by

eVh
A= — =2 1
! kgl g (81)
eVs
A - T = 2
> kT 70 (82)

Supposing that the detector current is reduced by about
10% if the main QD is occupied, the parameter U of the
Coulomb repulsion between both QDs can be taken as

BU =328 (83)

Moreover, the detector current is typically about 107-108
larger than the QD current.

The energy level of the second quantum dot is sup-
posed to be in the middle between the reservoirs chemical
potentials and the couplings to the reservoirs are chosen
symmetric and independent of the energy. Under such
assumptions, possible parameter values are given by

B, = 25 (84)
Bprar =0 (85)
Mp=Tr=Ti=Tr=1 (86)
BpaL = 70 (87)
Bpor =0 (88)
Do, = Iog = Top, = Tor = 10° (89)

(90)

562 =35



while the level of the QD No. 1 has the energy €1, which
may take different values in the following numerical cal-
culations. We suppose that the correlation times of the
reservoirs are short enough for the conditions (19) to hold
in agreement with the perturbative approximation, and
that the thermal energy is sufficiently large to satisfy the
conditions (20). We use here the rates of the QD No.1
in order to fix the unit of time.

There is no Coulomb drag for the conditions chosen in
the present section because we have taken rate constants
such that I'; = I'; in Eqgs. (86) and (89). Therefore, the
Onsager coefficient (47) vanishes together with higher-
order coefficients according to Egs. (48) and (49) and the
Coulomb drag does not manifest itself for the conditions
we consider here.

B. Stochastic simulations

The random time evolution of the system can be gen-
erated by simulating the stochastic jump process of the
master equation (22) with Gillespie’s algorithm.?%:39 Four
possible transitions may occur from each of the four
states. The transition rates are given by Eqgs. (11)-(14)
with the Fermi-Dirac distributions (15)-(16) and the rate
constants (86) and (89).
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FIG. 2: Simulation with Gillespie’s algorithm of the detector
current in circuit No.2 measuring the occupancy of the QD
No.1. The parameter values are given by Egs. (83)-(90) and
Be1 = 0. The effective affinity of the circuit No. 1 is Al =1.17.
The mean value of the QD current is Ji1 ~ 0.17 electrons
per unit time. The mean value of the secondary current is
J2 =~ 4.8 x 107 electrons per unit time. The QD is empty
(resp. occupied) when the secondary current takes the value
5 x 107 (resp. 4.5 x 107).

Figure 2 depicts the current in the circuit No.2 av-
eraged over a time interval At = 0.01, which is shorter
than the typical dwell time of the QD No. 1, as required
by Eq. (60). We see that the current is reduced by about
10% when the QD No.1 is occupied, which is in agree-
ment with the choice for the parameter (83). The ratio
between the mean values of the currents is given here by
Jo/J1 = 2.8 x 108, while the ratio of the dissipated pow-
ers takes the value Iy /I1; = (AgJ2)/(A1J1) = 7.9 x 108,

Such very large ratios are required in order for the sec-
ondary current to distinguish between the two states of
the QD in the primary circuit. Simulations show that the
fluctuations of the secondary current would be larger for
smaller values of the current ratio. Thanks to the large
ratio, the instantaneous occupancy in the circuit No.1
can be monitored by the current in the circuit No. 2 over
the time scale (60), which is longer than the time scale
of the fast circuit No.2 but shorter than that of circuit
No. 1.

C. The cumulant generating function and its
properties

The cumulant generating function of the current in the
circuit No. 1 is calculated by the leading root of the char-
acteristic polynomial (37) of the four-by-four matrix (31)
with Ao = 0.

The lack of symmetry of the single-current generating
function Q(A1,0) is manifest if the rate constants of both
circuits are of the same order of magnitude. The gener-
ating function and its symmetric function with respect to
the effective affinity is depicted in Fig. 3 for I'y;/Ty; = 1
(with ¢ = L, R) and BU = 30. Here, the effective affinity
is taken as the non-trivial root of the generating func-
tion such that Q(A;,0) = 0. We clearly see that the
generating function is not symmetric with respect to the
effective affinity Q(A1,0) # Q(A; — A1,0) so that the
single-current fluctuation theorem does not hold in gen-
eral although the two-current fluctuation theorem always
does. Furthermore, we notice that the effective affinity
Ay = 1.6319 is much smaller than the affinity determined
by the reservoirs: A1 = B(pir, — r) = 25.

In Fig. 4, the single-current generating function is de-
picted for the smaller value of the Coulomb repulsion
BU = 10 and T'y;/T1; = 2. Here, the effective affinity
takes a larger value, but again the asymmetry of the gen-
erating function is still manifest. The shape of the gen-
erating function now deviates from the parabolic shape
seen in Fig. 3 while its maximum approaches the unity
value.

Although the ratio of the rate constants is of order
unity in both Figs. 3 and 4, the difference between the
generating function and its symmetric function is smaller
than 5% and could remain unobservable if the counting
statistics were not precise enough.

Figure 5 shows the deformation of the generating func-
tion @Q(A1,0) as the electrostatic coupling parameter U
varies from zero to SU = 20 for I'y;/T'1; = 100. In the
absence of electrostatic coupling, the single-current fluc-
tuation theorem holds in the circuit No. 1 since it is de-
coupled from the rest of the system. In this case, the
affinity takes the value A; = 25 determined by the two
reservoirs of this circuit, as seen in Fig. 5. However, the
non-trivial root A; of the generating function decreases
as the Coulomb repulsion U increases, showing the back-
action effect of the secondary circuit due to the capacitive
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FIG. 3: The cumulant generating function versus the counting
parameter A1 at A2 = 0 and the symmetric function with
respect to the effective affinity A; = 1.6319 (dotted-dashed
line) for the parameter values SU = 30, Be; = 0, Bea = 35,
Buir = 25, Buir = 0, Bpor, = 70, Buor = 0, ' = T'ir =
FlL = FlR = 1, and FQL = FQR = FQL = FQR =1.
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FIG. 4: The cumulant generating function versus the counting
parameter A1 at A2 = 0 and the symmetric function with
respect to the effective affinity A1 = 16.8356 (dotted-dashed
line) for the parameter values SU = 10, Be; = 10, Bes = 35,
Buir = 25, uir = 0, Bpor, = 70, Buor = 0, ' = T'ir =
F1L = F1R = 1, and FQL = FQR = FQL = FQR = 2.

coupling. In the same progression, the maximum of the
generating function is also reduced.

For the ratio of rate constants taken in Fig. 5, the
generating function is already practically indistinguish-
able from its symmetric function Q(A; — A1,0) so that
the single-current fluctuation theorem is already effective
and the considerations of Sec. V apply. In particular, the
effective affinity is now approximated very well by Eq.
(80).
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FIG. 5: The cumulant generating function versus the counting
parameter \1 at A2 = 0 for different values of the electrostatic
coupling parameter SU. The other parameters take the values
Ber = 10, Bea = 35, ﬁ,LL}L = 25, Buir = 0, Bupar, = 70,
Buer = 0, ', = Tir =T =Tir = 1, and T'ep, = Tor =
I'ar, = I'og = 100.

D. The large current ratio limit and the effective
affinity

In the limit where the ratio of rate constants tends to
infinity, the generating function becomes identical with
its symmetric function, as argued in Sec. V. In order
to verify this prediction, we depict in Fig. 6 the differ-
ence between both functions versus the counting param-
eter A\1. We observe in this figure that the difference is
reduced by one order of magnitude each time the ratio
of rate constants I's/T'; is increased by the same factor.
Consequently, the single-current fluctuation theorem is
well established in the large ratio limit I's/T'; — oco. In
this limit, the effective affinity is given by Eq. (80).

The effective affinity is depicted in Fig. 7 as a func-
tion of the energy ey of the QD No. 1 for U = 15. We
observe that the effective affinity takes the actual value
(81) determined by the reservoirs for either low or large
values of the energy [e;. However, the effective affin-
ity undergoes a significant reduction in between, down
to a minimum of about A; ~ 0.45 x A;. The func-
tion has a characteristic shape, which can be explained
in terms of the Fermi-Dirac distributions (15) and (16)
entering in the expression (80) of the effective affinity.
Away from their critical energy €; = pj or ¢; = u; — U,
these Fermi-Dirac distributions behave approximately as
either constant functions or Maxwell-Boltzmann expo-
nential distributions. Because of the logarithm defining
the effective affinity (80), this latter switches between ei-
ther constant or linear dependences on the energies or
chemical potentials. Supposing that psgr < €2 < por, — U
and 0 < U < p11, — p1r, we find that the effective affinity
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FIG. 6: The difference between the cumulant generating func-
tion and its symmetric with respect to the effective affinity A
versus the counting parameter \; at A2 = 0 for the parameter
values BU = 10, Be1 = 10, Be2 = 35, BuiL = 25, Buir = 0,
Buzr, =70, Buor =0, T =Thr =T =Tir =1, and I'> =
FQL = FQR = FQL = FQR = 1,10, 100, 1000, 10000; AS ob-
served in Figs. 3 and 4, the difference Q(A1,0) —Q(A1—X\1,0)
is positive for \; < 1211/2 and negative for A\; > [11 /2. Here,
we only depict the difference for Ay < A; /2. The other half
has a similar structure if the absolute value of the difference
is taken before the logarithm.

is given approximately by

B — pir) for e <mr—-U
R B(—e1 = U+ pir) for pr —U <€ < puir
Ay~ < Bl —pmr —U) for g < e <pup —U
B(er — par) for piL —U <e <pr
Bl — pir) for L < e
(91)
up to corrections that are smaller than 8 = (kgT)~*

in the zero temperature limit 7" — 0. Crossovers hap-
pen where the energy €; coincides with the values of the
chemical potentials of the left- and right-hand reservoirs
and the chemical potentials reduced by the Coulomb re-
pulsion U. The slope of the effective affinity versus fe;
is successively {0,—1,0,+1,0}, as seen in Fig. 7. Ac-
cording to Eq. (91), the minimum value of the effective
affinity is approximately given by A; ~ A; — U = 10 in
the middle interval Suir = 0 < Be; < BuiL — U = 10.
The affinity A; = 25 of the reservoirs is recovered for
Ber < Buir — BU = —15 and for Be; > Buir, = 25,
which explains the features observed in Fig. 7.

Equation (91) predicts that the minimum value of the
effective affinity could be decreased further by increasing
the Coulomb repulsion U. This is indeed the case, as
observed in Fig. 8, which depicts the effective affinity
versus the energy €; now for the value (83) of the param-
eter U. Here, we see that the effective affinity may vary
from the maximum value given by the affinity A; = 25
imposed by the reservoirs down to the very small mini-
mum value A; ~ 0.083565 at Se; ~ —3.9525, i.e., a drop
by a factor 300.
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FIG. 7: The effective affinity (80) of the QD versus the di-

mensionless energy [e; of its level for the parameter values
BU =15 and (84)-(90).
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FIG. 8: The effective affinity (80) of the QD versus the di-

mensionless energy ey of its level for the parameter values
(83)-(90).

If the condition por < €2 < por, — U is still satisfied for
the parameter values of Fig. 8, the Coulomb repulsion
is now larger than the difference of chemical potentials:
U > pi1, — par- In this other regime, the effective affinity
is given approximately by

Bl — pir) for e <pmr-U
R B(—e1 — U+ p,) for pir —U < e < pq, — U
Ai~< 0 for L —U <e <pr
Ber — pir) for r <e <pin
B(pr — pir) for piL < e

(92)
up to corrections that are smaller than 3 = (kg7)~! in
the zero temperature limit 7" — 0. In the middle interval
BuiL — U = =78 < PBe; < Bpir = 0, the minimum
effective affinity reaches a value that vanishes in the low



temperature limit 77 — 0. The actual value of the affinity
A1 = 25 is recovered for fe; < Buir — fU = —32.8 or
ﬂel > 6#1[, = 25.
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FIG. 9: The effective affinity (80) of the QD versus the dimen-
sionless electrostatic coupling constant SU for the parameter
values Be; = 0 and (84)-(90).

The dependence of the effective affinity (80) on the
Coulomb repulsion is shown in Fig. 9 for a given value
of the energy Be; = 0. Here also, the effective affinity
can be reduced down to a much lower value than the one
determined by the reservoirs. By a similar reasoning to
the one used to get Eqs. (91) and (92), we can obtain
the approximate dependence of the effective affinity on
the parameter U under the conditions g — €1 < 0 <
pir, — €1 < pop, — €2 as follows:

B(=U + pr, — pir)
for O<U<,LL1L7€1
5(61 —MlR)
for pur, —e1 <U < por, — €2
BU + ez — por, + €1 — p1R)
for o, — €2 < U < por, — €2 + pi1, — €1
B(pir — par)
for por, — €2+ — €1 <U

(93)
up to corrections smaller than 8 = (kgT)~! as T — 0.
The piecewise linear approximation obtained from the
Fermi-Dirac distributions here also explains the succes-
sive slopes —1, 0, +1, and 0, observed in the plot of the
effective affinity versus SU. We notice that the differ-
ent linear pieces of the approximation match together at
the crossover values of the variable SU. The minimum
value is reached in the interval (1, —€1) = 25 < BU <
B(uar, — €2) = 35 while the affinity A; = 25 of the reser-
voirs is recovered for BU > B(uar, — €2 + pir, — €1) = 60,
as is indeed confirmed by Fig. 9.

Figure 10 shows how the effective affinity (80) behaves
as a function of the chemical potentials p1r and pqy, of
the reservoirs connected to the QD No.1. This figure
confirms that the effective affinity undergoes crossovers

12

FIG. 10: The effective affinity (80) divided by the actual affin-
ity A1 = B(pir — pr) of the QD No. 1 versus the chemical
potentials p1r and pir, for the parameter values ¢4 = —10,
€2 = 357 U = 3287 FlL = FIR = flL = flR = 1,
Fop = Ior = Do = Tar = 10%, por = 70, por, = 0, and the
inverse temperature 8 = 1. We notice that the two affinities
A; and A; change their sign along the diagonal line p11, = pir
although their ratio does not.

FIG. 11: The effective affinity (80) divided by the actual affin-
ity Ay = B(pir — par) of the QD No. 1 versus the chemical
potentials p1r and pqr, for the same parameter values as in
Fig. 10 but the inverse temperature 8 = 0.2. Here also, the
two affinities A1 and A; change their sign along the diagonal
line pir, = pir but their ratio does not.

if these chemical potentials take the values €; and €; +U.
On the one hand, the effective affinity reaches its lower
values in the domain where €; < i1, < €1 +U and ¢ <
wir < €1 + U. On the other hand, the actual value of
the affinity is recovered in the domains pqr,, i, < €1
and ¢ + U < pip, pn. If the temperature increases,
the effective affinity becomes smoother as we observe in
Fig. 11 for a temperature five times higher.



In summary, the lowering of the effective affinity under
specific conditions can be explained in the present model
as the effect of the back action of the secondary circuit
interacting with the observed quantum dot. The charging
and discharging rates of the quantum dot can be modified
drastically by the coupling to the secondary circuit. In
this way, the effective affinity can be much reduced in
some regimes that are determined by the value of the
energy €1 of the quantum dot with respect to the values
of the chemical potentials and the electrostatic coupling
parameter U. This back-action effect tends to disappear
as the temperature increases at constant voltages.

VII. CONCLUSIONS

In the present paper, we have reported the study
of the single-current fluctuation theorem in a Hamilto-
nian model of quantum electron transport in two capac-
itively coupled channels, each containing a quantum dot
(QD).?> This system has similarities to the electronic de-
vices used in typical counting statistics experiments?°:37
where the current in one circuit can continuously monitor
the state of the QD in the other circuit thanks to the ca-
pacitive coupling. The model allows us to investigate the
effects of the back action of the monitoring circuit on the
counting statistics in the light of the so-called fluctuation
theorems.

Since both circuits are capacitively coupled and mi-
croreversibility holds for the total Hamiltonian (4), a fluc-
tuation theorem is satisfied for the two currents flowing
across the system. This two-current fluctuation theorem
(39) or (41) relates the counting statistics of opposite ran-
dom electron transfers in both circuits to the affinities or
thermodynamic forces (35) and (36) driving the system
away from equilibrium. The fluctuation theorem is valid
far from equilibrium in the strongly nonlinear regimes
encountered in electronic circuits composed of quantum
dots.

However, in counting statistics experiments, one cir-
cuit is used to monitor the current fluctuations in the
other circuit so that the counting statistics cannot be car-
ried out on both currents together and is thus restricted
to a single current. Accordingly, such experiments can
only test a single-current fluctuation theorem. In general,
the two-current fluctuation theorem does not imply the
single-current fluctuation theorem except under certain
conditions®® or in some limits, as we have demonstrated
in the present paper.

In Sec. 1V, we have studied the limit of large ca-
pacitive coupling between both circuits. In this limit,
the state of simultaneous occupancy of both QDs in the
two parallel channels is at such a high energy that it
is energetically forbidden. The consequence is that the
two single-occupancy states are separately accessible only
from the empty state, and the single-current fluctuation
theorem holds with respect to the affinity determined by
the chemical potentials of the reservoirs.
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In Sec. V, we have instead considered the limit where
the current in one circuit is much larger than in the other
circuit. Indeed, a large current ratio is a key feature
of typical counting statistics experiments2®3” where the
current ratio reaches values as high as 107-10%. The cir-
cuit with the very large current performs the continuous-
time monitoring of the quantum state of the QD in the
other circuit. In such a limit, the charging and discharg-
ing rates of the slow QD take values averaged over the
very fast fluctuations of the monitoring circuit. This is
the essence of the back action of the monitoring circuit
onto the QD circuit. As a consequence of the large cur-
rent ratio limit, the single-current fluctuation theorem
holds but with respect to the effective affinity (80), which
can be significantly reduced with respect to the actual
value of the affinity determined by the reservoirs of the
corresponding circuit.

As shown in Sec. VI, e.g. by Eq. (91), the reduc-
tion of the affinity is due to the capacitive coupling be-
tween both circuits and occurs when the transition ener-
gies {€1,€1 + U} of the quantum dot lie within the bias
window [u1Rr, p11,] where the dynamics of the system is
sensitive to the fluctuations of the detector. In terms of
the parameter U of the Coulomb electrostatic interaction
appearing in the Hamiltonian (1), the affinity is lowered
according to Ay ~ Ay — BU under the validity conditions
of Eq. (91). This result explicitly expresses the effect
of the back action between both circuits on the single-
current fluctuation theorem. This back-action effect can
be weakened if the Coulomb repulsion U is decreased,
but the monitoring circuit can no longer resolve the two
states of the QD as in Fig. 2 if U is too small. On the
other hand, the back-action effect is also weakened for
large values of the Coulomb repulsion as shown by Eq.
(93) and in Fig. 9. Indeed, for a large Coulomb repul-
sion, the affinity recovers the value determined by the
reservoirs and the back-action effect disappears. This
case corresponds to the situation considered in Ref. 40
where a quantum fluctuation theorem was obtained in a
multiple measurements scheme.

From a general viewpoint, the two-current fluctuation
theorem implies the non-negativity of the entropy pro-
duction in agreement with the second law of thermody-
namics. The dissipation of energy can thus be evaluated
in the electron transport process used to perform quan-
tum measurement in the experiments of Refs. 20 and 37.
This dissipation of energy accompanying quantum mea-
surement is expected on fundamental grounds.*! The ne-
cessity of resolving the QD state in real time has as a
direct consequence that the dissipation in the monitor-
ing circuit is much higher than in the QD by a factor
I /TI; = (As/Aq) X (Jo/J1) of the same order of mag-
nitude as the current ratio Jo/J;. If the QD state is
monitored with a sampling time At, the secondary cir-
cuit playing the role of the detector should have tran-
sitions on equal or shorter time scales according to Eq.
(60). Since the secondary circuit is driven out of equi-
librium by the affinity Ao, its electron current should



satisfy Jo = (At)~1, so that the dissipated power should
be bounded by Il = kpT Az Jy > kpT Az(At)~!. The
higher the time resolution, the higher the dissipation
rate.

To conclude, we have shown here that the single-
current fluctuation theorem is valid under different lim-
iting conditions and provides a fundamental understand-
ing of the back-action effect of the monitoring circuit
on the affinity of the monitored circuit, as observed
in Ref. 20. The present study extends the analysis of
Refs. 21, 23, and 24 in showing how the effective affinity
of the single-current fluctuation theorem can be directly
expressed in terms of the parameters entering the Hamil-
tonian of the system. The present study leaves open sev-
eral issues. Although our study has been carried out with
the simplified model of Ref. 25 which neglects the capac-
itances between the QDs and the reservoirs, we expect a
similar reduction of the effective affinity if these capaci-
tances are included in the model. Another issue is that
the counting statistics experiments of Ref. 20 are per-
formed with two QDs in series monitored by a quantum
point contact, which form a system where the reduction
of the affinity may be induced by more control parame-
ters than the ones we have discussed here. Related issues
concern experiments on fluctuation relations in quantum
coherent conductors.*?3 We hope to report on these is-
sues in forthcoming publications.
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APPENDIX A: CALCULATION OF THE
AVERAGE CURRENTS

In this appendix, two different methods are developed
in order to calculate the average currents given by Eq.
(42) in terms of the leading eigenvalue @ of the four-by-
four matrix (31).

The first method starts from the eigenvalue equation
(30) for the right eigenvector v associated with the eigen-
value () and from the adjoint equation

L' u=-Qu (A1)

for the left eigenvector u where T denotes the transpose
of the matrix. The left and right eigenvectors satisfy the
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normalization condition

ul-v=1 (A2)
Accordingly, the eigenvalues is given by
Q=-u"-L.-v (A3)

Taking the partial derivative 0, with respect to the
counting parameter \, of Egs. (A2) and (A3) and using
Egs. (30) and (A1), we obtain the following expression
for the average current:

Ja = aaQ|A=O = _uT . aaL : v’A:O (A4)
Since the left and right eigenvectors are given at A = 0
by

1

1
uly_, = 1 and Viy_o =
1

in terms of the probabilities (27), we get Eqgs. (43) and
(44) for the average currents.

With the second method, the average currents as well
as the linear response coeflicients are directly calculated
in terms of the characteristic determinant (37) of the
four-by-four matrix (31). This determinant is a poly-
nomial of fourth degree:

Q4+ C5Q° + CQ* +C1Q+Cy =0 (A6)

where the coefficients depend on the parameters of the
model as well as on the counting parameters \; and .
We notice that the last coefficient is just the determinant
of the matrix (31): Cy = det L.

Since the matrix (31) reduces to the matrix of a jump
stochastic process conserving probability if A\; = Ay = 0,
the leading eigenvalue vanishes in this limit:

Q(0,0) =0

The average currents being given by Eq. (42), we take
the partial derivative 0, of the characteristic determinant
with respect to the counting parameter A\, to get

(A7)

(4Q° + 3C3Q% +205Q + C1) 9.Q
+00C3 Q% 4+ 0,C2 Q% + 0201 Q + 0aCo = 0
(A8)
Now, the counting parameters must be set equal to zero

and, according to Eq. (A7), the average current is thus
given by

A9
Cr |, (A9)

Using  the symbolic  manipulation  software
Mathematica,** we can evaluate the derivative d,Cy if
the reservoirs of the circuit « are at equilibrium, i.e.,



if its chemical potentials are equal so that its affinity
is vanishing: A, = B(ttar — ttar) = 0. The result is
that this quantity vanishes under the condition I'; = f‘j
even if the other circuit is out of equilibrium, which
establishes Eq. (48).

We notice that the Onsager coefficient can also be ob-
tained in the same way. Using Eq. (46) and taking a
further derivative of Eq. (A8) with respect to the other

15
counting parameter g, we get

9a05Cy

(A10)
20, A=0,A=0

Log=Lgn=

which is used to obtain Eq. (47) with the symbolic ma-
nipulation software Mathematica.*4
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