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I. INTRODUCTION

Recent work has shown the importance of chaotic behavior and of the sensitivity to initial conditions to understand
how irreversible processes such as diffusion, viscosity, heat conductivity or reactions may arise in classical Hamiltonian
systems [1, 2]. Indeed, the exponential separation between classical trajectories which are infinitesimally close can
be shown to have for consequence exponential decays or relaxations in the Hamiltonian scattering by a hill, in some
chaotic scattering systems, or in simple fully chaotic maps such as the multibaker map [2].

Moreover, in the escape-rate formalism, the transport coefficients have been shown to be related to the difference
between the sum of positive Lyapunov exponents — which characterize the sensitivity to initial conditions — and the
Kolmogorov-Sinai (KS) entropy — which characterizes the dynamical randomness of the trajectories that are trapped
forever in the scattering region and that form a so-called fractal repeller [3-6].

These results and others [7-11] suggest that the microscopic chaos in the motion of atoms or molecules composing
matter plays an important role in the transport and reaction properties of classical dynamical systems.

However, the question arises whether these considerations about classical chaos are still relevant at the quantum-
mechanical level of description. The reason is that quantum mechanics is a linear theory although classical mechanics is
nonlinear. This problem has been the subject of much work for about two decades and many results have accumulated
which provide a rich and detailed picture of the properties of classically chaotic quantum systems.

In order to connect quantum to classical mechanics and to study how chaotic behavior may emerge at the classi-
cal level, a method of choice is the semiclassical theory in which the quantum-mechanical properties are expanded
asymptotically in the formal limit where the Planck constant vanishes i — 0. A central result of modern semiclas-
sical theory is the famous Gutzwiller trace formula [12] which allows the periodic-orbit quantization of classically
chaotic systems and, in particular, of scattering systems such as the disk scatterers [13], the helium atom [14, 15]
and the hydrogen negative ion [16], as well as metastable triatomic molecules [17]. Although practically limited to
few-body systems, the semiclassical quantization method already allows us to study irreversible decay processes such
as electronic conductance, unimolecular reactions or atomic auto-ionizations.

Spatially extended scattering systems have also been studied in order to characterize the transport across these
systems from the viewpoint of scattering theory. In particular, Landauer proposed a scattering theory of electronic
conductance which is powerful for the mesoscopic semiconductor circuits. Beside conductance which is obtained
from the transmission coefficient in Landauer’s theory, time-dependent properties of relaxation type are also of great
interest because they are related to the diffusion coefficient in the quasiclassical limit.

In Sections 2 and 3, we shall give an overview of the methods of semiclassical quantization and of some of its
applications to scattering systems.

In Section 4, we shall be concerned by relaxation and dynamical randomness in many-body quantum systems.
It turns out that quantum systems acquire some of the dynamical properties of classical chaotic systems in the
large-system limit or thermodynamic limit. In this limit, several types of properties may be studied such as the
statistical properties of the energy eigenvalues and eigenfunctions. Much work has been devoted to these spectral
properties showing that many quantum systems with a sufficient degree of genericity behaves like random matrices
on the small energy scale where individual eigenvalues are resolved [18, 19]. Such considerations were initiated by
Wigner and others in the fifties in the context of nuclear physics [18]. Today, these random-matrix properties have
been experimentally observed also in atomic, molecular, electromagnetic, and acoustic systems. Besides, several
numerical calculations have shown that many-body quantum systems of solid-state physics behave similarly. We shall



here review such results for many-spin quantum systems [20]. These random-matrix properties are also observed in
classical chaotic systems and they allow to justify some of the basic laws of thermostatics. In particular, Srednicki
has shown that some of the statistical properties of eigenfunctions of classically chaotic systems imply thermalization
and the quantum equilibrium thermal distributions [21]. These properties can also justify dynamical properties such
as the decay of time correlation functions evaluated with typical eigenfunctions. In this context, a nonMarkovian
stochastic Schrodinger equation has recently been derived on the basis of similar and related considerations [22].

Finally, we shall be concerned by the characterization of dynamical randomness in large quantum systems and by
the definition of quantum analogues of the dynamical entropies per unit time.

II. SEMICLASSICAL QUANTIZATION
A. Quantum time evolution of pure states

In quantum mechanics, a system is described by a wavefunction which evolves in time according to the linear
Schrédinger equation

iho, v = H. (1)

If the Hamiltonian H is time independent, the wavefunction at the current time t is given by applying the time
evolution operator to the initial wavefunction

Yr = exp(—iHt/h) o . (2)

In the position representation, this equation has the following integral form

@) = / dao K (q, d0, ) vo(qo) - (3)

where K(q,qo,t) is the propagator that is the probability amplitude for the particle to move between the positions
qo and q during the time ¢.

Feynman has shown that the quantum propagator — which is the time evolution operator in the position represen-
tation — can be obtained by a path integral involving the Lagrangian function L(q,q,t) of the system as
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for the propagation from qg to q during the time t.
If the propagation proceeds in the semiclassical regime, the action may be supposed to be much larger than the
Planck constant

t
W= [ Laanir . (5)
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In this semiclassical limit, the path integral can be evaluated by the method of stationary phases, which selects the
preferred paths for the propagation as the classical trajectories which are the rays obeying the Hamiltonian equations

. 0H, . 0H,
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The propagator can thus be asymptotically approximated by a sum over all the classical trajectories ¢ which connects
qo to q during the time ¢

i
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Since the propagator K(q,qo,t) is still a quantum amplitude it is given by the linear superposition of the quantum
amplitudes of the different classical trajectories. W, is the action of the classical trajectory and Ay is an amplitude
associated with the classical trajectory, the expression of which can be found elsewhere [23]. This amplitude behaves
differently depending on the stability properties of the classical trajectory. We may say that, globally over a long time
interval, the more unstable the trajectory is the faster its amplitude decays.



B. Quantum time evolution of mixed states

In order to consider a statistical ensemble of pure quantum states, we introduce the density matrix p = . [1;)p; (¥ ],
where p; are the probabilities of occurrence of the states ; in the statistical ensemble. The average of an observable
D is then given in terms of this density matrix by (D) = trpD. The time evolution of the density matrix is governed
by the Landau-von Neumann or quantum Liouvillian operator

1
O p = Z[Hopl = Lp. (8)

An important related superoperator is the energy superoperator
1
H() = S(H- + H). (9)

The energy superoperator always commutes with the Liouvillian superoperator [£,H] = 0, so that they have common
eigenstates such that

Lp=sp,
{ Hp=Ep, (10)
where is is a complex frequency and E an energy. For a bounded quantum system, these common eigenstates are
given by pmn = |Em)(Ey| in terms of the energy eigenstates, H|E,) = E,|E,).
In order to consider a representation which is close to the classical phase-space representation, we can introduce
the Wigner transform of an operator X by

. r r
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In the Wigner representation, the Liouvillian and energy superoperators are given by [24]

(Lp)w = # Hw sin % pw = (Lo + WL 4 L™ 4 .. ) pw
X (12)
(Hp)w = Hw cos ™ pw = (Ha + I*H® + 1HW + ) pw

where A = Fq 8_;, — gp 8_(;, Hw = H. is the classical Hamiltonian, while
Lcl(') = {HC17 : }Poisson (13)

is the classical Liouvillian operator given by the Poisson bracket with the Hamiltonian.

These results lead to the most interesting observation that the energy superoperator becomes an operator of
multiplication with the classical Hamiltonian at the leading order of an expansion in powers of the Planck constant.
In the quasiclassical limit, if we consider the eigenstates of the energy superoperator they must therefore satisfy

[Hcl +O(ﬁ2)} pw = Epw . (14)

If the corrections in A% can be neglected, we have an equation of the form zf(x) = 0 for an unknown density f(z)
depending on the energy variable x = F — H.j. Such an equation has a solution in the theory of generalized functions
or Schwartz distributions, which is given by the Dirac distribution f(z) = d(x) up to a constant factor. We can
therefore conclude that, in the quasiclassical limit, the eigenstate is defined on the energy shell H, = E by

pw = g 6(E— Ha) + O(h?), (15)

where g(q,p) is some density which may be proportional to other delta distributions involving further constants of
motion.

If we consider an eigenstate with the eigenvalue s = 0 for the Liouvillian operator and if the system is ergodic, the
function g is constant and we recover the microcanonical ensemble in the quasiclassical limit i — 0. This result is
related to a conjecture by Berry and Voros [25] that averages over the Hamiltonian eigenstates, (E,|A|E,), tend to
the microcanonical average in the limit # — 0. This conjecture has been proved for certain classically chaotic systems
which are ergodic, mixing and hyperbolic of Anosov type [26].



The time-dependent properties of a system can be characterized by the time correlation functions of the various
observables of the system, such as the autocorrelation function of D

C(t) = (D0)D(t)), with D(t) = exp(iHt/h) D exp(—iHt/h) (16)

where the average is taken over a time-invariant state which is either a Hamiltonian eigenstate or a mixed state given
by a density matrix which is a function of the Hamiltonian operator: p = P(H). It is also interesting to introduce
the spectral functions that are the Fourier transforms of the correlation functions

+oo
S(w) = / dt exp(—iwt) (D(0)D(t)) . (17)
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An example of such a spectral function is the cross-section for photoabsorption that is given by the Fourier transform
of the time autocorrelation function of the dipole electric moment of the system [27]. The average is taken over the
quantum state of the system prior to the absorption. If the system is at a low temperature with respect to the energy
of the absorbed photon, the initial system can be considered in its ground state. This case is treated in the following
Subsection 2.3. However, if the temperature is higher, the initial state is a thermal state described by a density matrix
and a different treatment is required which is described in Subsection 2.4.

C. Trace formula for pure-state averaging

In this subsection, our aim is to obtain a semiclassical expression for the spectral function (17) in the case where
the average is carried out over a pure state of density matrix p = |po){po| which projects on the ground Hamiltonian
eigenstate: H|wg) = Folpo)-

In this case, the spectral function (17) becomes

S(w) =tr A§(Ey + hw — H) with A =277 D|wo){po|D . (18)

Therefore, at low temperatures, the spectral function is expressed as a trace of an operator directly involving a lone
resolvent of the Hamiltonian. Such an expression can be calculated semiclassically and expanded in terms of periodic
orbits with the Gutzwiller trace formula.

We owe to Gutzwiller the first derivation of a semiclassical trace formula including the oscillating contributions of
the classical periodic orbits for quantities like (18) [12]. Under certain circumstances, the periodic-orbit contributions
are able to approximate semiclassically the effect of quantization. Previously, the work by Weyl and Wigner showed
how to approximate quasiclassically expressions given by traces [24]. Such quasiclassical expansions are based on the
use of the Wigner transform (11). However, such quasiclassical expansions do not reproduce the effect of quantization.
Gutzwiller derived a periodic-orbit trace formula for the level density which is defined by Eq. (18) with A replaced
by the identity operator I. The trace has for effect that the selected classical trajectories are closed, i.e., are periodic
orbits. However, Gutzwiller’s treatment is general and extends also to the spectral functions for which we can obtain
the following semiclassical approximation [23, 28]:

s = [ Yadp 4 (@ p) 6[E - Hua,p)] + 07+
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with E = Ey + Aiw. In this formula, Aw denotes the Wigner transform (11) of the operator A defined in Eq. (18);
S)E) = §peda (20)
P

is the reduced action of the periodic orbit p; p, is its Maslov index which characterizes the winding of the trajectories
around the periodic orbit and m,, is the matrix of the linearized Poincaré map near the periodic orbit. The sum is
carried out over all the prime periodic orbits and their repetition r = 1,2,3,... The period of the periodic orbit is
given in terms of the reduced action (20) according to

(21)



With the formula (19), the spectral function is decomposed into a smooth quasiclassical background given by the
first term and oscillating contributions from the periodic orbits which are superposed on top of the smooth background.
The peaks of the spectral function may allow us to identify the energy eigenstates of the system.

It turns out that the contribution of the unstable periodic orbits to the spectral function can be rewritten as

S(w) Imﬂlnzw /\)‘ + oY) | (22)

po oA A=0
with E = Ey + hw, in terms of the so-called Selberg Zeta function
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which is a product over the periodic orbits of the perturbed Hamiltonian system, He(q, p,A) = Hea(q, p)+ w(q, p)
[23, 29]. In the Zeta function (23), the stability factors Aék)(E,)\) are the eigenvalues of the linearized Poincaré
map m,(E,\) and they satisfy |A1(,k)\ > 1. If the classical system is structurally stable, we have that S,(E) =
limy_q S’p(E, A). The product over the periodic orbits can be expanded into a sum over topological combinations
of all the periodic orbits, called the cycle expansion [30, 31]. By regrouping terms of high period, this series can
be reordered into terms of lower and lower magnitudes as the period increases. Truncation can be carried out for
numerical computations [31].

The presence of several periodic orbits leads to interferences between their different quantum amplitudes in the
cycle-expanded Zeta function. These interferences cause irregularities in the structures of the spectral function. The
greater is the number of periodic orbits with different reduced actions, the greater are the irregularities in the spectral
function [32].

D. Trace formula for mixed-state averaging

Let us now consider that the spectral function involves an average over a statistical mixture described by a density
matrix which is a function of the Hamiltonian operator p = P(H). This is the case for a canonical ensemble for which
P(E) = exp(—pE)/Z with the inverse temperature 3.

The spectral function (17) can be expressed as

S(w) = / dt dE e~ P(E) tr §(E — H)D(0)D(t) , (24)

in terms of a time autocorrelation function averaged over a microcanonical ensemble. By using the Wigner transform
and the Gutzwiller trace formula, the spectral function can be semiclassically approximated as [33, 34]

df xd! .
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where all the quantities in the periodic-orbit contributions are evaluated at the energies £ = Ej, ,,(w) at which there
is resonance between the driving frequency w and the intrinsic frequency of the periodic orbit p: w = 2mn/T,(E).
The first term of (25) is the classical expression involving the classical Liouvillian operator. Dw = Dw(q, p) is the
Wigner transform of the operator D while H is the classical Hamiltonian. The second term contains the oscillating
contributions of each unstable periodic orbit p at repetition r. The magnitude of each periodic-orbit contribution is
proportional to the square of the coefficient of the Fourier expansion of the observable Dy evaluated at the periodic
orbit p

I 2mn
Do =7 [ Dovlato)pio)] exp (~i%) ar. (20)
p Jo P
m,, , is the same matrix of the linearized Poincaré map of the periodic orbit p at the energy E = E, ,(w) [33].
We observe that, here again, the spectral function has a smooth background given by the quasiclassical expression
while the oscillating contributions from the periodic orbits are superposed on top of this smooth background because



the system is finite. The same semiclassical calculation can be carried out for the dynamic susceptibility of a non-
interacting system of Fermions in a trapping potential [33]. In this example, the oscillating contributions are due to
the Fermionic shells which exist in atoms, in nuclei or in metallic clusters. These periodic-orbit corrections prevent
the existence of normal dissipation or transport, but since they only appear Rt away from the leading quasiclassical
term these oscillating contributions tend to disappear when the number of degrees of freedom f increases indefinitely
so that we may expect that normal dissipation or transport is restored when f = oc.

The comparison with Eq. (19) shows that a very different expression for the spectral function is obtained here in
the case of a state given by the statistical mixture. Here, we find a non-trivial time dependence under the classical
dynamics involving a statistical ensemble of trajectories according to the density P(H,;). For a classically mixing
system, the autocorrelation function is expected to decay for ¢ — £oo. This decay is controlled by classical resonances
called the Pollicott-Ruelle resonances which are the generalized eigenvalues of the classical Liouvillian operator [35].
These resonances are given by taking the trace of the Frobenius-Perron operator exp(L.t) over the energy shell
H, = E. We can view this trace of a classical operator as the quasiclassical limit of an appropriate trace of the
quantum Liouvillian evolution operator restricted to the eigenstates of the energy superoperator. Using a result by
Cvitanovic and Eckhardt for the trace of the classical Frobenius-Perron operator in a classically hyperbolic system
with unstable periodic orbits [36], we find that the trace of the quantum Liouvillian evolution operator is approximated
quasiclassically by

= (t—rT,
T e(e) = 3 30 7, g ] OO 1)
r=1

where T}, is the period of the prime periodic orbit p and m,, is the same matrix of the linearized Poincaré map as in
Eq. (19).
The Laplace transform of this evolution operator gives the ‘trace’ of the resolvent of the Liouvillian operator [2]

/ dt exp(—st) Trg exp(Lt) = Trg L _ 2 In Za(s; E) + O(R?) (28)
0 s—L ds

in terms of the classical Zeta function
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The zeros of this classical Zeta function, Z.(s; E) = 0 give minus the classical decay rates for the dynamics on each
energy shell H, = E. We notice that both the periods T}, and the stability eigenvalues A, depend on the energy F,
as expected. At this level, we see the importance of introducing the energy superoperator and its eigenstates, which
allows us to obtain a classical dynamics restricted to one energy shell as it should be. This classical behavior is in
contrast with the quantum-mechanical behavior in which the quantization of energy selects the eigenenergies. In a
classical scattering system, the leading Pollicott-Ruelle resonance gives the so-called classical escape rate v (E) > 0
of trajectories out of the interacting region

s = 8()(E> = — ’YCI(E) . (30)

We remark that the classical Zeta function (29) has similarities with the semiclassical quantum Zeta function
(23), but they have also important differences because they are concerned by the time evolution of different types
of quantities. The semiclassical quantum Zeta function is concerned by quantum amplitudes while the classical Zeta
function is concerned by classical probabilities. Since the probabilities are essentially given by the squares of the
quantum amplitudes, we may explain the differences as follows. Let us consider the quantum amplitude associated
with an unstable periodic orbit of a two-degrees-of-freedom system

exp [ 8p(E) — i5 ]
1Ap(E)|2

(31)

This amplitude depends on the quantum phase of the orbit and on the square root of its stability eigenvalue. At the
level of the density matrix, the relevant quantity is the amplitude (31) multiplied by the complex conjugate of another
quantum amplitude, which should give a classical probability. Since we consider in Eq. (29) a time-dependent process
with a decay rate —s, the other amplitude should be taken at the energy E' = E — ihs with respect to the energy



E of (31). The difference between E’ and E is an imaginary energy corresponding to the imaginary frequency —s.
Accordingly, in the classical expression, we expect to find the factor

€Xp [%SP(E) - i%ﬂp} eXp [_%SP(E/) + igﬂp]

Ay ()| % Ay (EY)|%
_exp i [Sp(E) = Sp(E) + ihsT,(E) + O(h*)]
B [Ap(E)]
. €xp [—sT,(E)]
ST (32

because of the classical formula (21). This argument explains that:

1. The stability eigenvalues themselves appear in the classical Zeta function (29) instead of their square roots which
appear in the semiclassical Zeta function (23).

2. The period multiplied by the decay rate —s appears in (29) instead of the quantum phase as in (23).

A last difference comes from the exponents (my, + 1) of the periodic-orbit factors in (29), which has its origin also
in the fact that the stability eigenvalues are classically involved instead of their square roots.

E. Characterization of classical chaos

Nonlinear classical systems governed by Hamilton’s equations generate a dynamics of trajectories. In the phase
space of the system, these trajectories may be stable or unstable. The possible dynamical instability may generate
dynamical randomness. Under such circumstances, the time average of an observable may be equivalent to an average
over a statistical ensemble of points which are distributed in the phase space according to an invariant probability
measure.

Such invariant measures can be constructed from the knowledge of the instability of the trajectories visiting succes-
sively different cells wyws - - - w,, in the phase space. In a two-degrees-of-freedom system, the dynamics stretches the
phase-space cells by a so-called stretching factor A, ..., which corresponds to a time interval T, ...,,,. An invariant
measure can be defined by assuming that the probability weight of the trajectories visiting the cells wiws -« - w,, is
smaller if this phase-space region is more unstable. Different invariant measures can be constructed depending on an
exponent 5 given to each stretching factor [37]. In the limit n — oo, the probability weight of the successive cells
wW1iWs -+ * Wy, is thus defined by

|AUJ1W2“'U-M I—ﬂ
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pp(wiws -+ wy) 5 (33)

where the denominator guarantees that the invariant measure is normalized to unity. The classical dynamics naturally
induces the invariant measure with § = 1, in which case the probability weight is inversely proportional to the
stretching factor. This result is consistent with the fact that each periodic orbit has a probability weight which is
inversely proportional to its stability eigenvalue as seen in Eq. (32).

In analogy with equilibrium statistical mechanics, Ruelle has introduced an associated pressure function as [38]

Pp) = tl—i>moo
0

)

1 _
E h’l Z |Aw1w2---wn‘ A ) (34)
wl ..

*Wn
t<Tyw, <t+At

where § is the diameter of the cells w. For a two-degrees-of-freedom system, the invariant measure p3 is equivalently
characterized by the KS entropy per unit time and by the mean Lyapunov exponent, or by the pressure function.

For an open chaotic system with two degrees of freedom (2F), the dynamics may select a set of trajectories which
are forever trapped in the interacting region. This set is called the repeller and it is characterized by an escape rate
as well as by partial fractal dimensions. All the different characteristic quantities of the repeller can be obtained from
the pressure function as shown in Table 1 [4, 6, 39, 40]. In Table 1, the four first quantities are evaluated for the
natural invariant measure with § = 1 which is directly induced by the classical dynamics. The two last quantities
characterize the topological chaos which is probed with the invariant measure with 5 = 0 for which all the trajectories
have an identical probability weight.



The pressure function can be evaluated from the unstable periodic orbits of the system as the leading zero s =
P(3; E) of the following inverse Ruelle zeta function

g __exp[=sTy(E)]
G (5 E) = H{l iy |A,€“<E>|ﬁ} ' v

The pressure function depends on the energy shell where the invariant measure (33) is defined.

TABLE I: Characteristic quantities of chaos in an open 2F system

Escape rate Yo = —P(1)

Lyapunov exponent A=-P'(1)

KS entropy hxs = A — ya = P(1) — P'(1)
L. . . . P(1

Partial information dimension di = % =1- P'(( 1))

Topological entropy htop = P(0)

Partial Hausdorff dimension P(du)=0

III. SCATTERING THEORY OF DECAY PROCESSES
A. Scattering resonances

Decay processes occur in finite systems which are excited by collisions with particles or waves coming from the
exterior of the system. This is the case for a vast set of experimental situations which can therefore be studied from
the viewpoint of scattering theory.

If the Hamiltonian of the system is time independent, the time evolution of the system can always be described
by the time evolution operator (2) or the propagator (3), which admit a decomposition on the eigenfunctions of the
Hamiltonian. The quantum-mechanical time evolution is thus completely determined by the energy spectrum of the
system.

For the purpose of obtaining the asymptotic time evolution for either ¢ — 400, a remarkable method is given by
the analytic continuation of the resolvent of the Hamiltonian toward either the lower-half complex energy surface
or the upper-half surface, respectively. In this way, the unitary time evolution is asymptotically approximated by
either the evolution operator of the forward semigroup or the one of the backward semigroup [23]. This method is
most natural and convenient to derive the asymptotic irreversible time evolution for the quantum wavefunction. By
analytic continuation, we can obtain the contributions from the complex singularities of the Hamiltonian resolvent,
such as the poles and the branch cuts which are issued from the energy thresholds of each scattering channel. The
poles of the resolvent are located in the lower second Riemann sheet of the complex energy surface at the complex
energies

o= B — il (36)
2
and are called the scattering resonances of the system. These poles of the Hamiltonian resolvent are also poles of
the S-matrix describing the scattering of plane waves in the system. If the resonance is sufficiently isolated and is
excited individually, its contribution to the wavepacket decays in time with damped oscillations and the corresponding
probability density decays exponentially with a lifetime given by the imaginary part of the complex energy (36) as

7, = h/T, . (37)

Long-time tails with power-law decays of the wavefunction also exist at energies near the thresholds where new
scattering channels open but they play a minor role [23].

This framework of the scattering and resolvent theories provides a firm basis to study the decay properties of open
few-body quantum systems. In this framework, the resonances give direct information on the decay because each
of them determines a lifetime. In particular, reaction rates can be determined from the knowledge of the scattering
resonances. Moreover, we can associate some Hamiltonian eigenstates with the resonances, in a similar way as
eigenstates are associated with the bound states.



In many systems, the scattering resonances form a dense spectrum which has to be analyzed statistically. For
this purpose, the semiclassical theory is an important method where the quantum-mechanical quantities such as the
Hamiltonian resolvent or its trace are expanded around the classical trajectories in the limit 7 — 0. Whether the
states are pure or mixed, different expressions are obtained in the semiclassical limit. For both pure and mixed states,
the time evolution can be decomposed onto the quantum scattering resonances. However, many systems evolve in
a semiclassical regime involving numerous quantum scattering resonances. The effect of the accumulation of many
quantum scattering resonances can be studied with the classical Liouvillian theory. In this regard, the classical escape
rate can be considered as an average over the multiple quantum decays due to the many individual quantum scattering
resonances.

B. Distributions of scattering resonances and bound on the quantum lifetimes

As we have shown here above, the quantum scattering resonances are given by the poles of the resolvent of the
Hamiltonian operator. In the semiclassical approximation, the periodic-orbit contributions of this resolvent are given
as [23]

Ll 29020 + o), (38)

tr
z—H po 62’

in terms of the semiclassical quantum Zeta function (23) with A = 0 for a classically hyperbolic system with un-
stable periodic orbits such as a classically chaotic system. As a consequence of (38), the poles of the resolvent are
semiclassically obtained from the zeros of the Zeta function: Z(z) = 0.

For a system with two degrees of freedom, the periodic-orbit contributions to the resolvent is a series which can
thus be evaluated as

exp hrS (2) — ’iETﬂp]
5323 AGE (39

[ME

Taking a complex energy

h

=F—i— 40
2 i (40)

the reduced action can be expanded in powers of h as

. h
Sp(2) = Sp(E) —i o Tp(E) + o(n?) (41)
because of Eq. (21). Whereupon the series becomes
K exp [rT,(E)/27]

t Z ZT eXp |:h Sp(E) — Zgrup W . (42)

p r=1

This series converges absolutely under the condition that the sum of the absolute values of the terms with their period
T, in the time interval t < T' < t+ At vanishes. An upper bound on this sum is given in terms of the pressure function
by

T/2
S o SRULD L exp(t/2r) exp[tP(B = 1/% )] —in 0, (43)
t<T<t+At ‘AT|2

with T' = rT, and A7 = Aj. We find the pressure function evaluated at 3 =1 /2 because the quantum amplitudes are
essentially the square roots of the classical probabilities except for a quantum phase, which is not relevant for absolute
convergence. We infer from (43) that the sum vanishes and the series converges absolutely under the condition that
the imaginary part of the complex energy (40) satisfies (1/27) + P(1/2; E) < 0 at the real energy E. Therefore, the
poles of the resolvent may only appear at the complex energies (36) such that

T 1 1
i _2P<TE>’ (14)
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in the asymptotic limit 7 — 0 [13, 23, 32].

In this way, we observe that the pressure at 8 = 1/2 determines a boundary on the complex energy surface above
which no resonance is expected. As long as the pressure at § = 1/2 is positive, this inequality does not impose a
bound on the resonances. However, the inequality becomes effective when the pressure is negative. In this case,
there is a gap below the real energy axis which is empty of scattering resonance. Since the pressure function vanishes
at the partial Hausdorff dimension of the repeller in a two-degrees-of-freedom system, this gap appears when the
corresponding classical dynamics has an invariant measure supported by a fractal set with a partial dimension less
than one half. If dg < 1/2, we may speak about a filamentary fractal as opposed to a bulky fractal with dy > 1/2.

The above result is remarkable in many respects if we compare with the mean lifetime expected from the classical
Liouvillian dynamics. Besides the bound (44), the semiclassical quantum lifetimes can also be estimated with the
escape rate given by the quasiclassical Liouvillian theory. Since the classical escape rate is given by minus the pressure
function at 0 = 1, we find that, quasiclassically, the lifetime is estimated as

va = & = — PLE), (45)

Tcl

instead of (44). The properties of the pressure function imply that

P (;,E) > % P(E). (46)
The equality occurs if the pressure function is linear, i.e., if the scattering system has a periodic unstable motion on
its repeller. If the motion on the repeller is chaotic, the pressure function is convex and a strict inequality occurs
in Eq. (46). In this chaotic case, the mean classical lifetime will thus be shorter than the largest possible quantum
lifetimes which may approach the semiclassical bound (44). Consequently, we find this important difference between
the classically periodic and chaotic systems [13]:

periodic : Ta(E) = mq(E), (47)
chaotic : Ta(E) < 7q(E), (48)

where the quantum lifetime at energy F is defined as the longest possible lifetime of the quantum scattering resonances:
Tq(E) = max{7,}g,.~g. On the other hand, the classical lifetime is defined on the decay of a quantum statistical
mixture involving many individual quantum resonances, as explained in Subsection 2.4. In this sense and as suggested
by comparing Eq. (45) with Eq. (44), the inverse of the classical lifetime gives some kind of average value for the
imaginary parts of the energies of the quantum scattering resonances. The classical lifetime acquires its importance
in the case of bulky fractal repellers, for which the bound (44) is no longer directly useful. In the case of a bulky
repeller, the classical lifetime may give in some systems an estimation of the imaginary part of the energy of a typical
scattering resonance.

C. Application to disk scatterers and unimolecular reactions

The resonance spectrum has been studied in detail for the scattering of a wave on several disks with different
boundary conditions [30, 41, 42]. These scattering systems have also been the object of scattering experiments with
acoustic waves [42] and electromagnetic microwaves [43].

The scattering resonances can also be used to characterize unimolecular reactions of molecules excited by absorption
of a photon. This excitation may bring the molecule up to an upper electronic Born-Oppenheimer potential energy
surface where the motion may be dissociative with a filamentary classical repeller. This is the case in Hgly and CO9
[17], for which agreement has been found with the bound on the quantum lifetimes described here above [32].

In many molecules, the classical repeller is bulky and it traps the trajectories in a quasibounded phase-space region
before escaping above a barrier which forms a bottleneck. In this bulky case, the classical escape rate becomes very
useful to evaluate the unimolecular reaction rate by assuming a quasi-equilibrium in the quasibounded region. Indeed,
if the repeller is bulky, the fractal dimension of the invariant measure is close to the phase-space dimension and it is
reasonable to assume a quasi-equilibrium distribution in the quasibounded region. Under these assumptions of RRKM
theory, the reaction rate can be calculated which gives an expression for the classical escape rate [44]. In the simplest
model, the scattering resonances are supposed to be distributed around the classical escape rate according to the
x2-distribution. This statistical theory has been applied to many experimental and numerical data on unimolecular
reactions as well as to nuclear reactions.
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D. Application to spatially extended scatterers

Landauer’s model of electronic conductance is based on the idea that the electron undergoes a scattering process
inside the electronic circuit connected to external reservoirs by wires which behave as waveguides. The circuit may
be localized like for a quantum constriction but it may also be spatially extended if it is a regular or a disordered
chain composed of many successive units.

Recently, we have analyzed the spectrum of resonances for the scattering of a particle in a one-dimensional potential
formed by many identical units [45]. We have shown that the resonances form band structures which are reminiscent
of the Bloch energy bands of the infinite periodic potential. Actually, if the potential contains N units satisfying
certain conditions of regularity, (N — 1) resonances accumulate just below each energy band.

If the one-dimensional chain is disordered, the Anderson localization is known to happen for the infinite system.
For a finite disordered chain, the spectrum of resonances and of bound states is irregular [46]. For energies where
the localization length is smaller than the total length of the scatterer, the transmission coefficient vanishes and the
scattering resonances have long lifetimes. At higher energies where the localization length is larger than the system
size, the transmission coefficient fluctuates just below the value unity and the lifetimes of the scattering resonances
are consistently much shorter [46].

In spatially extended systems with a chaotic classical dynamics, diffusion may occur as in the Lorentz gas or in the
multibaker map. In such systems, the classical escape rate decreases as vq(E) ~ D(E)(r/L)? with the system size
L, where D(FE) is the energy-dependent diffusion coefficient [13]. A similar behavior is expected for the distribution
of the imaginary parts of the quantum scattering resonances in such systems. In this context, the Pollicott-Ruelle
resonances and the escape rate have been shown to play an important role in the semiclassical quantum theory of
diffusion [47].

IV. MANY-BODY QUANTUM SYSTEMS
A. Transport in many-body quantum systems

Transport properties such as diffusion, viscosity, heat or electric conductivities can be described quantitatively within
the Green-Kubo theory. For a quantum system in a thermal state, a transport coefficient is given by the integral of
the time autocorrelation function of the microscopic current associated with the transport process according to the
Kubo formula [48], which can be transformed into an Einstein-type formula by introducing the associated Helfand
moment [49]. In this way, a simple proof can be given that the transport coefficient are non-negative [50].

If the many-body system is bounded, its energy spectrum is discrete and, as a consequence, its time correlation
functions are almost-periodic functions of time. Such an almost-periodic function of time has the property to be
recurrent, which is problematic because the recurrences spoil the Kubo formula. The way out of this difficulty is to
take a thermodynamic limit where the number of particles in the system increases with the volume of the system,
keeping the density constant. In this limit, the time correlation function is expected to converge to a function which
decays. Indeed, for a finite system, the almost-periodic oscillations and the recurrences only appear for times longer
than the Heisenberg time defined by the Planck constant multiplied by the mean level density day (F)

tHeisenberg =n daV(E) ~ (h/kBT) (n )‘ge Broglie)_N ’ (49)

where Ade Broglie = 2mh/v/mkgT is the thermal de Broglie wavelength of the particles of mass m and n is the
number of particles per unit volume. The Heisenberg time grows exponentially with the number N of particles in the
system, under the condition that the temperature is large enough with respect to the particle density in order that
n A3, Broglie < 1. Since the Heisenberg time becomes astronomical even for a few thousands particles under standard
conditions, the Kubo formula can be justified thanks to a rapidly attained thermodynamic limit.

B. Spectral randomness in many-body quantum systems

In spite of the fact that for many-body systems the energy eigenvalues become too dense to be resolved, their spectral
properties still govern the time evolution, which has motivated the statistical analysis of the energy spectrum.

A property of interest is the degeneracy of the eigenvalues, which determines the dimension of the nullspace of the
quantum Liouvillian operator and, therefore, the number of constants of motion, i.e., of operator which commute with
the Hamiltonian. The larger is the nullspace dimension, the greater is the number of constants of motion which may
restrict the normal transport properties.
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In this context, we have compared the spectral properties of different systems with many spins S = 1/2 forming a
square two-dimensional lattice, namely, the Ising, the Heisenberg and the dipolar spin systems. This comparison has
revealed strikingly different spectral properties [20].

In the Ising system, the degeneracy is the highest as expected for this exactly solvable system.

For the Heisenberg system, the degeneracy is intermediate with high degeneracies for the states associated with
the ferromagnetic spin waves. Geometric and some dynamic symmetries could be used to block-diagonalize the
Hamiltonian. Within the remaining blocks of the Hamiltonian, the eigenvalues follow a Poisson-type spacing statistics,
suggesting the existence of further symmetries besides the one considered.

However, for the dipolar spin system, the degeneracy was the smallest due only to the known geometric symmetries.
After block-diagonalization, the eigenvalues of each remaining block follow a Wigner-type spacing statistics, precluding
the existence of further symmetries. The results show that the dipolar system has the less regular dynamics. The
transport of heat has also been studied numerically [52].

The statistics of the curvature of the energy levels, i.e. of the second derivative of each eigenvalue with respect to
an external field, has also been studied for the dipolar spin system [51]. The probability density of the level curvatures
presents the universal power law P(K) ~ K3 for K — oo, confirming the existence of a Wigner spacing statistics
in the dipolar spin system. The curvature distribution has also been considered in the context of electronic states in
disordered media in relation to the problem of electronic conductance [53].

C. nonMarkovian stochastic Schrédinger equation for a slow subsystem coupled to a fast bath

Among the possible many-body quantum systems, we often find a small and slow subsystem which interacts with
a fast thermal bath. Examples of such systems are a spin or a cluster of spins coupled to the vibrations of their
host molecule, liquid or solid, which is common in NMR. Effective two-level subsystems also occur in electron- or
charge-transfer reactions in condensed phases. The total Hamiltonian of such systems has the form

H =H, + H, + AV  with V =Y 8, Ba, (50)

where Hy is the Hamiltonian of the isolated subsystem, Hy, is the one of the bath, while the interaction between the
subsystem and the bath is described by the subsystem operators S, and the bath operators B, respectively.

The kinetics of such open systems may be described by a quantum master equation which governs the time evo-
lution of the subsystem density matrix [54]. If we make a formal analogy with a classical process such as Brownian
motion, the master equation would be the Fokker-Planck equation but we should also expect the existence of an
equivalent stochastic equation such as the Langevin stochastic differential equation. Its quantum analogue would
be a stochastic Schrodinger equation, as recently introduced and studied [55, 56]. However, the recently introduced
stochastic Schrodinger equations are restricted to be equivalent to Markovian quantum master equations of Lindblad
type [57]. The Markovian assumption requires that the time correlation functions of the bath

Cap(t) = (Ba(t)Bs(0)) , (51)

be proportional to the delta Dirac distribution 6(t), which is a good approximation for light-matter interaction because
of the fast velocity of light.

However, most of the thermal baths have a nonvanishing relaxation time for their time correlation functions. For
such systems, we have recently derived a nonMarkovian stochastic Schrédinger equation in the weak coupling limit
[22]. The derivation is based on three main ideas:

1. A suitable definition is given to the concept of ‘wavefunction’ for a subsystem. The stochastic Schrodinger
equation is supposed to govern the time evolution of such a ‘subsystem wavefunction’. For this purpose, the total
wavefunction is decomposed in the basis of the eigenfunctions {x,(zy)} of the bath Hamiltonian:

\P(xs’wb;t> = Z (bn(ws?t) Xn(wb) . (52)

The coefficients ¢,,(xs;t) of this linear decomposition still depend on the subsystem coordinates x5 and they play the
role of the ‘subsystem wavefunctions’. Since the bath is very large, there is an enormous number of such coefficients
¢n(xs;t), many of them behaving statistically in a similar way. Accordingly, we suppose here that they form a
statistical ensemble. One typical coefficient may be expected to evolve stochastically because it is driven by all the
other coeflicients.

2. In order to obtain the equation of motion for the ‘typical’ coefficient ¢;(zs;t), we use the Feshbach projection-
operator method. This projection method is used in the Hilbert space, which fulfils our need to remain with a
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FIG. 1: Bloch component z = (o) versus the time ¢ for an individual trajectory of the nonMarkovian stochastic Schrédinger
equation for the spin-boson model.

quantum-state description. An operator P of projection onto the ‘typical’ coefficient ¢;(zs; t) as well as its complement
@ = I — P are introduced by

(P 0)(zs, ) = du(ws) xi(n) (53)
QW)(we, ) = Y duls) xnlan) , (54)
n (#1)

which obey the standard relations for projector operators: P? = P, Q? = @, and QP = PQ = 0. Using the projection
method by Feshbach, the equation for the typical coefficient PWU(t) is obtained as

i 0y PU(t) = PHP PU(t) + PHQ e '@H Qu(0)

t
— i / dr PHQ € @HR0=Y QHP PY(7) . (55)
0

In the right-hand side, the first term is eseentially the subsystem Hamiltonian, the second is the stochastic forcing of
the subsystem by the thermal bath and the third is the dissipative loss from the subsystem toward the bath.

3. In order to close the equation for the typical coefficient PU(t) or ¢;(xs;t), a triple hypothesis is introduced.
Firstly, the average over a typical bath eigenfunction x;(x,) is assumed to be equivalent to an average over a thermal
statistical mixture for the bath. Secondly, the different subsystem wavefunctions ¢, (zs;t) are assumed to differ by a
random phase. Thirdly, the noises are assumed to be Gaussian. The first part of the hypothesis can be justified if the
bath is classically chaotic and has eigenfunctions x,, (zp) which satisfy the Berry-Voros conjecture [25]. In this regard,
Srednicki has shown that the quantum thermal equilibrium distributions for Bosons and Fermions are consequences of
the Berry-Voros conjecture [21]. The second part of the hypothesis allows us to fix the form of the initial wavefunction.

By using this triple hypothesis as well as a perturbative expansion up to second order in the coupling parameter
A, we have been able [22] to derive the following nonMarkovian stochastic Schrodinger equation for a wavefunction
1 (xg;t) which is proportional to a typical coefficient ¢;(xzs;t) of the decomposition (52):

P00 () = Hyp(t) + A D nalt) S ¢(t) (56)
— i A /t dr Z Cop(T) S e7HT S ap(t — 1) + O(N?)
0 )

where Cyp(t) are the bath correlation functions (51) and 7,(t) are Gaussian noises 7, (t) satistying

Ma(t) =0, 1a()ns(0) =0,  and 75 (H)ns(0) = Cap(t) - (57)
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FIG. 2: For the spin-boson model under the same conditions as in Fig. 1, comparison between a simulation using the
nonMarkovian stochastic Schrodinger equation (56) and the prediction of the corresponding nonMarkovian master equation at
the early stage of the time evolution of the Bloch variable z in order to show the slippage of initial conditions over the bath
relaxation time #, ~ 1. The average (pluses) is here taken over a statistical ensemble of 2 x 10° individual trajectories.

We have shown that this stochastic equation has for master equation the nonMarkovian quantum master equation
of second-order perturbation theory [22]. In the long-time limit, this nonMarkovian master equation tends to the
famous Redfield master equation [54] supplemented by a slippage of initial conditions [58]. This slippage of initial
conditions can solve the well-known problem of the violation of positivity by the Redfield master equation [58]. The
nonMarkovian stochastic Schrodinger equation also avoids this problem of positivity and consistently reproduces the
slippage of initial conditions [22].

Our stochastic Schrodinger equation has been applied to the spin-boson model of a spin S = 1/2 coupled to a
thermal bath of bosonic harmonic oscillators. Fig. 1 depicts the spin variable z = (o) for a long trajectory of
an individual system taken in the statistical ensemble. Fig. 2 shows an average over the statistical ensemble and
the agreement between the simultation with our stochastic Schrodinger equation and the calculation based on the
quantum master equation just after the initial condition, demonstrating the slippage of initial conditions on the time
scale of relaxation of the bath correlation function (51).

D. Quantum entropies per unit time and the characterization of dynamical randomness

Stochastic behavior is expected to occur in large many-body quantum systems. In contrast, few-body quantum
systems which are bounded have a discrete energy spectrum and, therefore, an almost-periodic time evolution. In
the thermodynamic limit, the almost-periodic time evolution could be expected to become stochastic because the
spectrum of the time evolution operator typically becomes continuous in this limit. Such a stochasticity is also the
feature of classical chaotic dynamical systems where dynamical entropies per unit time have been defined in order to
characterize the dynamical randomness.

In the late fifties, Kolmogorov and Sinai have rigorously defined an entropy per unit time as follows. For classical
dynamical systems, suppose that the dynamics is a flow ®! acting in the phase space I' of the system and which
maps the initial conditions X onto the current point X; = ®'X,. The dynamics is supposed to leave invariant
a probability measure p. The classical observables are the functions defined in the phase space and they form a
commutative algebra in which the flow induces the time evolution

$IAX)] = A@'X). (58)

Among the observables, we find the indicator functions of cells w defined in the phase space: A(X) = I,(X). We
define a denumerable partition P = {w} of the phase space I' into non-overlapping cells covering the whole phase
space: wNw’' = () and Uw = I'. The classical system is observed stroboscopically at regular time intervals ¢,, = nAt
with n = 0,1,2,... The probability that the trajectories visit successively the cells wowiws ---wp_1 at the times
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to,t1,t2, ooy tno1 18 p(wowiws - - - wp—1). The entropy per unit time of the partition P is defined by

. 1
h(P) = tli)rgo A Z wlwows + - wp—1) Inp(wowy -+ wp—1) . (59)
wow1 Wn—1

The KS entropy per unit time is the supremum of the entropy over all the partitions [59]
hks = supp h(P) . (60)

The entropy per unit time is the rate of decrease of the multiple-time probabilities because we have the
Shannon-McMillan-Breiman theorem: If (®*, T, i) is an ergodic classical dynamical system and P is a partition of
I', then

wlwows - -wp—1) ~ exp[—n At h(P)] , (61)

for almost all initial conditions X € I" such that ®*4'X € wy, [59].

We observe that the entropy per unit time is a property of n-time probabilities, i.e., of n-time correlation function,
in contrast to the transport, Burnett and super-Burnett coefficients which are properties of the 2-; 3- and 4-time
correlation functions. This observation gives us a hint about how the concept of KS entropy can be generalized to
quantum systems.

In 1987, Connes, Narnhofer and Thirring (CNT) made a first proposal for an extension of the concept of dynamical
entropy to noncommutative algebras [60]. The CNT quantum entropy reduces to the KS entropy when the algebra
of operators becomes commutative. The notion of partition was replaced by a set of noncommutative subalgebras
and the entropy was defined for this set of subalgebras. The CNT quantum entropy per unit time was defined by
considering the subalgebras generated by shifting successively in time an initial subalgebra. The CNT entropy per
unit time vanishes as expected for few-body quantum systems with a discrete energy spectrum. It may be positive
for large quantum systems with infinitely many particles in a thermal state. For noninteracting Bosons or Fermions,
a closed expression was derived for the CNT entropy per unit time [61]. As expected again by correspondence with
the classical entropy, this entropy per unit time is proportional to the surface crossed by the ideal gas of Bosons or
Fermions. The corresponding classical entropy per unit time of an ideal gas is recovered in the limit 7 — 0, as shown
elsewhere [62].

More recently, another definition of a quantum entropy per unit time was proposed by Alicki and Fannes [63]. It is
based on a decomposition X of the identity operator as

doxlx, =1, (62)

w

where X, are operators in the quantum algebra. These operators are shifted in time by steps At according to
¢ (X,) = X, (t) = exp(iHt/h) X, exp(—iHt/h) . (63)

A multiple-time matrix D,, of time correlation functions is defined by the matrix elements

D [Q,Q] = tr|Xo,  (ta-1) - Xo, (t1) Koy (to)
Q
Xpeq X1, (t0) XL, (1) -~ X[, (1), (64)
Q/

where Q = wowy -+ - wp—1 and Q' = wiw] - - w),_; are two arbitrary sequences of labels of the operators X, and where
Peq 18 the equilibrium density matrix. If there are M operators X, in the decomposition (62), the matrix (64) has
the size M™ x M™. This matrix is Hermitian D, [Q2, Q'] = D, [, Q]* and non-negative.

An example of decomposition is given by taking the operators X, as the projection operators P,,, which satisfy
(62) because P,P, = P,0uu, P, = Pj:, and ) P, = I. With this assumption, the sequences 2 and €' define
two quantum histories of Griffiths, Gell-Mann, Hartle and Omneés and the matrix (64) characterizes the decoherence
between the quantum histories 2 and Q' [64]. In particular, each diagonal element of the decoherence matrix is
non-negative, D, [, Q] > 0, and defines a probability for the quantum history 2. If the histories © and Q' have no
common coherence the matrix element D,,[Q2, '] vanishes.
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If the algebra is commutative as in classical mechanics, the projection operators P, may be taken as the indicator
functions I, (X) of the cells of a partition P = {w} of the classical phase space. In this case, the different factors
composing (64) commute and D, [, Q] = 0 if Q # Q' because the cells of the partition do not overlap. Therefore,
the decoherence matrix is diagonal for a commutative algebra as in classical dynamical systems

commutative algebra: D,[Q,Q] = D,[Q,9Q] daqr - (65)

The Alicki-Fannes (AF) entropy per unit time of a quantum dynamical system is defined by [63]

. 1
har = supy nleréo ~ A Tr D,1InD,, . (66)
For a commutative algebra, the AF entropy reduces to the KS entropy by the property (65).

A Renyi-type quantum entropy per unit time can similarly be defined as

1 InTr DZ

h(g) = supy nlLH;o T AL ﬁ ) (67)
with a Renyi parameter ¢q. For ¢ = 1, h(q) = har. The quantum entropy (67) reduces to the classical Renyi-type
entropy per unit time in the classical limit 7 — 0 by (65).

The above entropies per unit time are expected to be nonvanishing only for infinite quantum systems defined by a
thermodynamic limit. We may conjecture that, for a quantum system with a positive entropy per unit time, a matrix
element of (64) would decay exponentially in a similar way as predicted by the classical Shannon-McMillan-Breiman
theorem (61). Already the diagonal matrix elements of (64) have been shown to decay exponentially for the system
of quantum spins coupled by a dipolar interaction [65].

The AF entropy has already been evaluated numerically for finite quantum systems confirming the vanishing of the
entropy per unit time in these systems. Many questions remain open concerning its value in infinite quantum systems
where it is conjectured to be positive.

V. CONCLUSIONS AND PERSPECTIVES

We have given a general overview of recent results on the decay, transport and stochastic properties of quantum
systems.

In Section 2, we have described the quasiclassical (Liouvillian) and the periodic-orbit semiclassical approaches
to quantum systems. We have shown that, generally, a spectral function can be decomposed into a quasiclassical
smooth contribution plus semiclassical periodic-orbit contributions which oscillate with the frequency or the energy
and which are supposed to approximate the effect of quantization of energy. The smooth quasiclassical contribution
is obtained in the Wigner representation by a Weyl series in powers of the Planck constant. The leading term is
the classical expression. The semiclassical periodic-orbit contributions are of Gutzwiller-type and their precise form
depends on the stability of the periodic orbits. Unstable periodic orbits only contribute by terms of order £~ while
the leading classical term is of order ii~! where f is the number of degrees of freedom. This result is of special
importance in our context because it shows that the periodic-orbit contributions will in general become negligible
in many-body quantum systems with f — oo. Therefore, we may conclude that the Weyl series would give the
essential contribution in interacting many-body quantum systems at nonvanishing temperatures such as fluids. The
periodic-orbit contributions are nevertheless important in microscopic and mesoscopic quantum systems like atoms,
nuclei, molecules, atomic clusters, or in solid-state systems where the quantum coherence of the few-body dynamics
remains important.

The contributions of the unstable periodic orbits can be expressed as the logarithmic derivative of a semiclassical
quantum Zeta function which is a product over all the periodic orbits. This result appears to be general in the
Gutzwiller semiclassical theory which is based on the periodic-orbit trace formula. In this regard, it should be
emphasized that the periodic orbits are selected in the semiclassical approximation because the quantum expression
is defined by the trace of an operator involving an evolution operator or a resolvent operator. The trace is given by a
Feynman path integral where the paths are closed on themselves so that, in the semiclassical limit, the paths reduce
to closed classical trajectories, i.e., to periodic orbits (and also to stationary points).

Furthermore, we have pointed out that different expressions are obtained for the spectral function whether it is
defined by an average over a pure or a mixed state. In the case of a pure state, the leading quasiclassical term is
a microcanonical average of a static quantity involving the pure state and the operator of the spectral function. In
the case of a mixed state, the leading quasiclassical term is the Fourier transform of the classical autocorrelation
function. The decay of such classical autocorrelation functions is often controlled by classical resonances called the
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Pollicott-Ruelle resonances which can be calculated thanks to a classical trace formula derived by Cvitanovié¢ and
Eckhardt [36]. This classical trace formula is essentially the trace of the resolvent of the classical Liouvillian operator
and, for a chaotic system, it is given by the logarithmic derivative of a classical Zeta function which is also a product
over the unstable periodic orbits of the system. The differences and similarities between the semiclassical quantum
Zeta function and the classical Zeta function have been explained in Subsection 2.4. The large-deviation formalism
to characterize classical chaos was also summarized in Subsection 2.5.

In Section 3, the semiclassical methods have been applied to quantum scattering systems in order to characterize
the decay processes which usually take place in scattering systems. The decay can be described thanks to the quantum
scattering resonances which are the poles of the scattering matrix or also the poles of the resolvent of the Hamiltonian
operator. This approach is of prime importance, in particular, in chemical kinetics in order to study unimolecular
reactions.

The semiclassical approach becomes of interest in systems where the scattering resonances accumulate and where
the resonance spectrum needs to be characterized by its statistical properties. The periodic-orbit semiclassical method
turns out to be powerful in this context to describe the structure of the resonances spectrum at high energies where
the scattering resonances can be approximated by the zeros of the semiclassical quantum Zeta function.

Moreover, a bound on the quantum lifetimes can be obtained which is useful when the classical repeller, made
of trajectories trapped in the interacting region, is filamentary. On the other hand, we have shown that a decay
process involving many scattering resonances may behave quasiclassically and obey the Liouvillian dynamics. In this
case, the Pollicott-Ruelle resonances become relevant and, in particular, the leading resonance which is the classical
escape rate. In this regard, the classical escape rate appears as a kind of average over the many quantum rates
defined by the individual scattering resonances. For classically chaotic systems, we have shown that the classical
lifetime corresponding to the escape rate is shorter than the longest quantum lifetimes. This result is compatible with
the interpretation of the classical escape rate as an average over the quantum rates associated with the scattering
resonances. The classical behavior predicted by the escape rate is thus expected to occur on an intermediate time
scale, after which the quantum scattering resonances with the longest lifetimes would dominate the decay process. The
theory is illustrated by applications to the disk scatterers, to ultrafast unimolecular reactions, and also to spatially
extended scatterers.

In Section 4, we have been concerned by systems with many degrees of freedom taken in the thermodynamic limit.
It is in this limit that the time evolution of a bounded quantum system may have a continuous spectrum and, thus,
become mixing. The mixing property is indeed required in order to guarantee the relaxation of the time correlation
functions and is, therefore, a necessary condition for the existence of positive and finite transport coeflicients according
to the Green-Kubo formula, as explained in Subsection 4.1.

In Subsection 4.2, we have presented several spectral properties of systems of increasing size in the case of spin
systems. In particular, the number of constants of motion has been studied as well as the Wigner spacing statistics
[20]. Different spectral statistics are observed for systems with or without dynamical constants of motion, which are
expected to determine the transport properties of the infinite system. Here, the observation of a Wigner statistics is
evidence for the absence of extra constants of motion. Similar results have been obtained for electronic systems. Such
properties of spectral statistics are thus expected to be general and of importance for many-body quantum systems.

Subsection 4.3 contains a summary of a recent derivation of a nonMarkovian stochastic Schrédinger equation, which
describes the dynamics of a slow quantum subsystem interacting with a faster thermal bath [22]. This stochastic
Schrédinger equation is associated with the Redfield quantum master equation with a slippage of initial conditions
[58] and is thus relevant for the relaxation of spins or other two-level systems in condensed phases as in NMR. This
stochastic Schrodinger equation may turn out to be useful for the simulation of quantum subsystems with a large
state space of dimension N > 1, because the stochastic equation only requires to integrate the 2/N real components
of the quantum state, while the associated master equation requires the simultaneous integration of the N2 variables
of the density matrix.

Finally, in Subsection 4.4, we have presented methods to characterize dynamical randomness, i.e., stochasticity, in
large quantum systems. We have argued that such a characterization can be performed with quantum entropies per
unit time which are the Connes-Narnhofer-Thirring entropy and the Alicki-Fannes entropy. This later entropy can
be interpreted as the rate of decay of the multiple-time decoherence matrices of the quantum histories introduced
by Griffiths, Gell-Mann, Hartle, and Omnes. We should notice that we are here concerned by the decay of the
decoherence matrices as the number of times increases. In a certain sense, these multiple-time decoherence matrices
form the quantum generalization of the multiple-time probabilities introduced by Onsager and Machlup for classical
Gaussian irreversible processes [66]. However, methods to evaluate conveniently the quantum dynamical entropy are
still missing. Such methods are desirable, especially, in order to calculate the quantum corrections to the KS entropy
recently obtained by kinetic theory for the hard-sphere gas [11].
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