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Viscosity in molecular dynamics with periodic boundary conditions
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We report a study of viscosity by the method of Helfand moment in systems with periodic bound-
ary conditions. We propose a new definition of Helfand moment which takes into account the
minimum image convention used in molecular dynamics with periodic boundary conditions. Our
Helfand-moment method is equivalent to the method based on the Green-Kubo formula and is not
affected by ambiguities due to the periodic boundary conditions. Moreover, in hard-ball systems,
our method is equivalent to the one developed by B. J. Alder, D. M. Gass, and T. E. Wainwright
[J. Chem. Phys. 53, 3813 (1970)]. We apply and verify our method in a fluid composed of N > 2
hard disks in elastic collisions. We show that the viscosity coefficients already take values in good
agreement with Enskog’s theory for N = 2 hard disks in a hexagonal geometry.

I. INTRODUCTION

Viscosity is the fundamental mechanism of dissipation of momentum in a fluid. Viscosity is described at the
macroscopic level by the Navier-Stokes equations which are the equations of balance of momentum in a fluid. At
the microscopic level, viscosity arises because of a transfer of momentum between fluid layers moving at different
velocities as already explained by Maxwell thanks to kinetic theory.

In the fifties, Green, Kubo, Mori, and others provided an explanation of all the transport properties in terms of
time-dependent statistical correlations of microscopic currents associated with each transport property [1-4]. They
showed that the transport coefficients are given as the time integrals of the time autocorrelation functions of the
microscopic currents, yielding the famous Green-Kubo formulas. Thereafter, Helfand showed in the early sixties that
the transport coefficients can be expressed by Einstein-like formulas in terms of moments — the so-called Helfand
moments — which are the time integrals of the microscopic currents [5].

These new methods by Green, Kubo, Mori, Helfand, and others have been applied to the computation of transport
properties by molecular-dynamics simulations, in particular, by Alder et al. [6]. In molecular-dynamics simulations,
the system is necessarily composed of a finite number of particles which are usually moving in a domain defined with
periodic boundary conditions in order to simulate the bulk properties. The periodic boundary conditions (p.b.c.)
usually considered in molecular dynamics are based on the so-called minimum image convention according to which
interaction should occur between pairs of particles separated by the minimum distance among the infinitely many
images of the particles allowed by the p.b.c.. In molecular-dynamics simulations, the minimum image convention
plays a fundamental role to define the microscopic current entering the Green-Kubo formula.

We may wonder if the Helfand-moment method could be applied to molecular dynamics simulations with p.b.c..
The advantage of the Helfand-moment method is that it expresses the transport coefficients by Einstein-like formulas,
directly showing their positivity. Moreover, this method is very efficient because it is based on a straightforward
accumulation which is numerically robust. Actually, it is a Helfand-moment method which has been numerically
implemented by Alder et al. for viscosity in hard-ball fluids [6]. Several other implementations of the Helfand-moment
method have been considered and discussed in the literature [7-9]. However, the implementation of this method for
systems subject to p.b.c. other than hard-ball fluids seems to remain ambiguous as reported by Erpenbeck in Ref.
[9].

The purpose of the present paper is to propose a Helfand-moment method which is appropriate for molecular
dynamics simulations with p.b.c. and which is strictly equivalent to calculations with the Green-Kubo formula. For
this purpose, we show the need to take into account the minimum image convention. In this way, we are able to
obtain a Helfand moment giving viscosity thanks to an Einstein-like formula in molecular dynamics with p.b.c.. The
so-obtained value of viscosity is in full agreement with the value of the Green-Kubo formula and also with the value
obtained by Alder et al. [6].

Our method is applied to the hard-disk fluid. We study in detail the simple model composed of two
hard disks in elastic collisions in a domain defined by p.b.c.. Due to the defocusing character of the disks,
this model is chaotic. ~Bunimovich and Spohn have demonstrated that the viscosity already exists in this
system with only two particles [10]. The model they studied is defined with p.b.c. in a square geom-



etry. It presents a fluid and a solid phases which are separated by a phase transition. The problems
presented by the model in a square geometry are that: (i) the viscosity exists only in the solid phase;
(7i) the viscosity tensor which is of fourth order is anisotropic on a square lattice. In the present work, we solve
these problems by considering a hexagonal geometry. Indeed, in the hexagonal geometry, the fourth-order viscosity
tensor is isotropic and we can proof the existence of viscosity already in the fluid phase.

Furthermore, we apply our method to systems containing more and more hard disks. We show that the values of
the shear viscosity obtained by our Helfand-moment method are in good agreement with Enskog’s theory, already for
the fluid of two-hard disks.

The paper is organized as follows. In Sec. II, we derive our expression of the Helfand moment for the viscosity
tensor to be of application in molecular-dynamics simulations with p.b.c.. In Sec. III, we describe the model of two
hard disks in the hexagonal and square geometries. In Sec. IV, we study different properties of the model like the
mean free path and the hydrostatic pressure, in particular, across the fluid-solid phase transition. In Sec. V, the
Helfand-moment method is applied to the two-disk model to calculate the shear and bulk viscosities. We show how
the fluid-solid phase transition affects the viscosities in this model. In Sec. VI, we extend our results to systems
with N = 4,8,12,...,40 hard disks. We show that the shear viscosity already takes a value in good agreement with
Enskog’s theory in the two-hard-disk system. Our results are discussed and conclusions are drawn in Sec. VII.

II. HYDRODYNAMICS, HELFAND MOMENT, AND VISCOSITY
A. Viscosity and hydrodynamics

The hydrodynamic theory provides us with the equations of motion for the conserved quantities in a fluid. In
particular, the local conservation of momentum is expressed by the well-known Navier-Stokes equations [11]:
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is the momentum flux density tensor, pv; is the momentum density, P the hydrostatic pressure, and agj the viscosity
stress tensor. This last tensor takes into account the internal friction occurring in a fluid when different parts of the
fluid move with different velocities. Therefore, agj has to be proportional to the space derivatives of the velocities:
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where 7;; 11 is the viscosity tensor.
For isotropic systems, the theory of Cartesian tensors shows that the basic isotropic tensor is the Kronecker tensor
d;; and that all the isotropic tensors of even order can be written like a sum of products of tensors d;; [12]:
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where a,b and ¢ are scalars. Since the viscosity stress tensor is symmetric o}, = o’;, only two of these coeflicients are
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independent because b = ¢. After a rearrangement, we have:
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for a d-dimensional system. The coefficients n = b and ( = a + (2/d)b are respectively the shear and bulk viscosities
and they can be expressed in terms of the elements of the fourth-order viscosity tensor as:
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B. The Green-Kubo formula in molecular dynamics with p.b.c.

Several techniques have been developed during the last century to evaluate the transport coefficients. One of the
most important methods was established by Green, Kubo, and Mori [1-4]. It consists in having a relation between
each transport coefficient and the autocorrelation function of the associated flux or microscopic current. In our case
(see Appendix A), we have:
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Pa and r, being the momentum and the position of the a'® particle, while F(r, — 1) is the force between particles
a and b. In Eq. (7) the average () is performed with respect to the equilibrium state. We notice that, for the
microcanonical state,

b= s ©)

(see Appendix A).
A very important point is that, in a system with p.b.c. as considered in molecular-dynamics simulations, the
difference of positions r, — r, must satisfy the minimum image convention that
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for a cubic geometry. More generally, the difference of positions must remain within a unit cell of the Bravais lattice
used to define the p.b.c.. With p.b.c., there is indeed an infinite lattice of images of each particle. All these images
move in parallel. If the force has a finite range the particle a interacts only with the particles b within its interaction
range. The force field F(r) has a finite range of interaction beyond which it vanishes. The interaction range is
supposed to be smaller than the size L of the box containing all the particles. It is important to notice that we do not
suppose here that the force field is periodic. In order to define a dynamics which is periodic in the box of size L the
positions should jump in order to satisfy the minimum image convention. As a consequence of this assumption, the
positions and momenta used to calculate the viscosity by the Green-Kubo method actually obey modified Newton’s
equations
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where Arfls) is the jump of the particle a at time ¢, in order to satisfy the minimum image convention. Moreover,
we impose that the particle No. 1 does not jump. To satisfy these conditions, the jumps at the time t5 when
|7aj(ts) — o5 (ts)| = L/2 can be given by
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with € = sgn[pa;(ts) — pp;(ts)]. The modified Newton equations (11) define a dynamics which is periodic on the torus
of the relative coordinates r, — r; because the jumps of the relative coordinates are vectors of the Bravais cubic

lattice: Ar((l;) — ATS-) = 0, 4L, while the momenta p, remain functions of the time without singularities worst than

discontinuities. We notice that modified Newton’s equations (11) conserve energy, total momentum and preserve
phase-space volumes (Liouville’s theorem).



C. Helfand moment for molecular dynamics with p.b.c.

In the sixties, Helfand has derived quantities associated with the different transport processes, in particular for the
viscosities [5]. These new quantities G;;(t) are such that we can obtain an Einstein-like relation for each transport
coeflicient. For the shear viscosity coefficient, we have:
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More generally, we can define such a relation for each element of the viscosity tensor:
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if we take G;;(0) = 0. The Helfand moment G;;(t) is defined as the integral of the microscopic current appearing in
the Green-Kubo relation:

Gij(t) = G”(O) +/O Jij(T) dT . (15)

As a consequence of the definition (15), the Einstein-Helfand formula (14) is equivalent to the Green-Kubo formula
(7), as proved in Appendix B. In a system of N particles on a torus and satisfying the minimum image convention,
we can integrate the current (8) with modified Newton’s equations (11) to get:
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where G;;(0) =0, pf{? = pai(ts) and O(t — t,) is the Heaviside step function at the time t, of the jump s:
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The expression (16) which we propose in the present paper can be used to obtain the viscosity coefficients thanks to
the Einstein-like formulas (14) in a molecular dynamics defined on the torus. We emphasize that the expression (16)
may apply to systems of particles interacting with a smooth potential under the condition that the range is finite,
or to systems of hard balls in elastic collisions. We show in Appendix C that the hydrostatic pressure can also be
written in terms of the Helfand moment (16).

Our Helfand-moment method has several theoretical and numerical advantages: (i) It is strictly equivalent to
the Green-Kubo method. (ii) The Einstein-like formula (13) or (14) directly show the positivity of the viscosity
coeflicient or viscosity tensor because t, 3, and V are positive. Moreover, the Helfand moments directly obey central
limit theorems, expressing the Gaussian character of the dynamical fluctuations in systems with finite viscosity.
(iii) Thanks to our expression (16) of the Helfand moment, the viscosity coefficients are given by a straightforward
accumulation over the successive jumps s. For a given system with N particles, numerical convergence can be reached
in the limit of an arbitrarily large number of jumps s, under conditions of existence of the viscosity coeflicients.

By defining the Helfand moment as the integral (15) of the microscopic current for a system with minimum image
convention, we obtain the expression (16) which can be used to directly calculate AG;;(t) = G;;(t) — G4;(0) for the
Einstein-Helfand relation, remaining consistent with the requirements imposed by the periodic boundary conditions
and with the Green-Kubo formula for a system satisfying the minimum image convention.

D. Comparison with other methods

In the seventies, Alder et al. [6] calculated the viscosity coefficients of hard-ball systems with Einstein-like formulas
based on expressions for Helfand moments which are specific to hard-ball systems. Instead of adding a new quantity
to the Helfand moment at each passage through the boundaries of the minimum image convention as in Eq. (16),
their expression takes into account only the elastic collisions between the hard balls. The Helfand moment can be



obtained by direct integration of the microscopic current according to Eq. (15) with G;;(0) = 0:
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Between the collisions the trajectory is a straight line and the particle velocities change only at each collision. There-
fore, the first term in the integral, the kinetic term, is constant during two successive collisions and changes only at
the collisions. The second term, the potential term, vanishes between two successive collisions and contributes only
at collisions. Indeed, for a hard-ball potential, the forces between the particles a and b colliding at the time ¢, of the
collision ¢ can be written in terms of the change Ap((f) = pPa(tc +€) — Pa(te — €) of momentum of the particle a at the
collision ¢ as

F(r, —15) = +Apy? 8(t —t.) (20)
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for t, — e < t < t. + €, because Apl()c) = pr((f). The forces with the other particles which are not engaged in the

collision vanish. Therefore, we obtain:
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where, in the first term, At._; . is the time of flight between the collisions c—1 and ¢ during which the momenta remain

constant and, in the second term, a and b denote the particles interacting at the collision ¢ and Té(l?j = 1qj(te) —mp;(te).

The first sum runs over the intercollisional free flights (¢ — 1, ¢) between the initial time ¢ = 0 and the current time ¢,
while the second sum runs over the collisions occurring between the time ¢t = 0 and ¢. If C' denotes the last collision
before the current time ¢, we notice that the last term of the first sum is Atc,c4+1 =t — tc. Hence, if we differentiate
Eq. (21) with respect to time and use (20) we recover the microscopic current (8). Therefore, the expression (21) is
equivalent to our expression (16) in the case of hard-ball systems. However, our expression (16) extends to systems
with a smooth interaction potential.

A comment is here in order about another method which has been considered and discussed in the literature [7—
9]. This other method implements an expression printed in the middle of a presentation given in Ref. [13] for the
calculation of shear viscosity with the Helfand-moment method. This expression differs from the Helfand moment by
the mere exchange of a square and a sum over the particles. The equivalence of the expression in Ref. [13] with the
Helfand moment depends on the vanishing of some cross terms as pointed out in Ref. [7]. Numerical evidence has
been obtained in Refs. [8, 9] that the expression in Ref. [13] is in general not valid to calculate the shear viscosity.
We notice that both the original Helfand moment and the expression in Ref. [13] do not strictly apply to systems
subject to p. b. c. (see discussions in Refs. [8, 9]). This problem is solved by the expression (21) of Ref. [6] in the
case of hard-ball fluids and by our expression (16) in the general case.

E. Symmetry considerations in two-dimensional systems

By symmetry, most of the elements of the viscosity tensor are either equal or vanish. First, we have:
Nij. kel = Nklyij = Njikl = Mij,ik » (22)

because of the stationarity of the equilibrium average, the reversibility of the microscopic equations, and the fact that

F(r, —ry) = F(||r, — 13]) is a central force. Secondly, in our work, the fluid is invariant under rotations by ¢ = %
for the hexagonal geometry and by ¢ = 7 for the square one. If we define the viscosity tensor as a linear operator 7

acting on matrices A according to (ﬁA)ij = Nij ket Ari. Then our discrete symmetry can be written as:

A(R'AR) = R (AR, (23)

for all matrices A, R being the rotation matrix
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and ¢ is equal to % or 7 respectively for the hexagonal or square systems. Thanks to this symmetry, the only

nonvanishing elements are ;5 = 74,55 and 1;;,5 = 1;;,;;. Furthermore, for ¢ # j, k # 1,

Mij,ij = MLkl Niiis = Njjjj » Miijj = Nkk,ll - (25)

Hence, there are in fact only three independent elements: 1,z 22, Nzy,zys Nez,yy.- On the other hand, for an isotropic
system, we can see that:

N = Nzyzy > (26)
1

The third element 1, 4, is in fact a combination of the two other elements:

III. DESCRIPTION OF THE TWO-HARD-DISK MODEL

In the present work, we apply our method to a simple model which we describe in the present section. The model
is composed of two hard disks in elastic collisions on a torus. Bunimovich and Spohn have previously studied this
model for a square geometry [10]. By periodicity, the system extends to a two-dimensional lattice made of infinitely
many images of the two disks. For p. b. c¢. on a square domain, the infinite images form a square lattice, in which
each cell contains two disks (see Fig. 1b).

(a) (b)

FIG. 1: The model of two hard disks: (a) in the hexagonal geometry and (b) in the square geometry.

In the present work, we generalize this model to the hexagonal geometry (see Fig.1la). The possibility of such a
model was pointed out in Ref. [14]. The images of each disk form now a triangular lattice. The two disks (the white
and the black ones) have the same diameter ¢ and mass m. They follow different trajectories. All the black disks
move together and all the white ones move together. The system is periodic and the dynamics of the disks can be
reduced to the dynamics in the unit cell or torus.

A. Hexagonal geometry

Let us first introduce some parameters of the system. L is the distance between the centers of two neighboring
cells. It also corresponds to the distance between two opposite boundaries of a cell.



FIG. 2: Basis vector (e and €’), position vector r, of particle a in the cell and the position vector r,;, 1, in the lattice.

By a linear combination of two vectors:

e=(L,0),
{e’ - (%L, @L) : (29)
we can spot all the cells of the lattice and then localize the center of a disk thanks to:
ro v =rotloetl, e, for a=1,2, (30)

where [, and I/, are integer, and r, is the position vector of the disk a with respect to the center of the cell. Therefore,
the distance between the two disks is expressed by

lri oy —ray =1 r -+l —l)e+(y —l)e |, (31)

r
where r = r; —r5 is the relative position between both disks. By the minimum image convention, the relative distance
lr|| should take the smallest value among the infinitely many possible values. Of course, this distance has to be

greater than or equal to the disk diameter (||r|| = ||r; — r2]| > o). As we have a hard-disk potential, the disks move
in a free motion between each collision. Therefore, the equations of motion are written as:
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where p; and ps are the momenta of the two disks, F'; and F5 being the forces applied respectively to the disks 1
and 2. These forces equal zero when ||r; — ra|| > o and are infinitely repulsive when ||r; — r3]| = 0. t, denotes the
time of the jump to satisfy the minimum image convention.

At this stage, we can do the following change of variables:

r=r; —ra,
R:r1_|2—m7 (34)

:Pl—m
P 2 (35)
P=p; +p2.



If we introduce the reduced mass u = 5, we can write:
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where v is the relative velocity and Ar(®) = Args) — Arés). Here we suppose that we are in the reference frame of the

mass center (that is P = 0). Accordingly, the energy of the system is reduced to:

2
p
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The interest of this change of variables is to reduce the number of variables. Indeed, the only variables that remain
are the relative position and velocity [r = (z,y) and v = (vg, vy)]. We can associate a fictitious pointlike particle with
these variables, which moves in a reduced system, known as the periodic Sinai billiard (see Fig. 3).

two-disk model periodic Sinai billiard

FIG. 3: The model of two hard disks in the hexagonal geometry is reduced to the periodic Sinai billiard thanks to a change of
variables.

The billiard is also a triangular lattice of hexagonal cells. The size d of these cells is equal to the size of the cells of
the model itself (d = L). A hard disk is fixed on the center of each cell. Its radius is equal to the diameter o of the
two moving disks.

The basis vectors of this lattice are the same as those of the original dynamics (32)-(33) if we replace L by d, which
gives us the possibility to spot a cell in the lattice thanks to the vector:

re=Il.e+l. €, (39)

where [. and I/, are integer.

In the Sinai billiard, the system is described by a trajectory in a four-dimensional phase space which are the Cartesian
coordinates (z,y, ps, py), or the polar coordinates (z,y,pg, 6). However, since the energy of the system is conserved,
this space is reduced to the three-dimensional space of the variables (x,y, ). Furthermore, in hard-ball systems, the
topology of the trajectory is independent of the energy level. Therefore, we can study the system on an arbitrary
energy level. This energy determines the temperature of the system and is equal to E = (d/2)(N — 1)kgT = kgT
because we have only two degrees of freedom (d = 2, N = 2). Sinai and Bunimovich have demonstrated that the
dynamics in such billiards is ergodic on each energy level [15, 16].

B. Square geometry

The case of the square geometry is similar to the hexagonal one except that the basis vectors are here given by

{ 2,::((%”0))’7 (40)



where L is the length of a side of the square unit cell which contains two moving disks of diameter c. We perform
the same change of variables to reduce the dynamics of two hard disks to the one of the fictitious pointlike particle of
a Sinai billiard in a square unit cell. Here also, the size d of the cells of the Sinai billiard is the same as for the cells
of the two hard disks model: d = L.

®,

®,

two-disk model periodic Sinai billiard

A /

FIG. 4: The model of two hard disks in the square geometry is reduced to the periodic Sinai billiard thanks to a change of
variables.

C. The different dynamical regimes of the model

The physical quantity determining the size of the cell in our model is the density which corresponds to the number
of disks per unit volume or, in our case, the number of disks per unit area. Each cell contains two disks. Therefore,
the density is n = 2 where V = ||e x €| is the area of a cell. In our study, we have chosen that the diameter of the
moving disks is equal to the unity: o = 1.

As a function of the density, we observe different dynamical regimes. At low density, the disks are able to move
in the whole lattice so that the disks are not localized in bounded phase-space regions. In this case, the billiard may
have a finite or an infinite horizon depending on the geometry and on the density. In the opposite, at high density, the
disks are so close to each other that they cannot travel across the system and we refer to this regime as the localized
regime. The critical density between the nonlocalized and localized regimes corresponds to the situation where both

disks have a double contact with each other in the configuration shown in Fig. 5.

FIG. 5: Hexagonal system at the critical density nc,.

1. Hezxagonal geometry

In the hexagonal geometry, the area of the system is V = ||e x €| = @LQ and the critical density is equal to:

Ty = ? ~ 0.5774 | (41)
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even though the maximum density (the close-packing density) is:

43
Mimax = Tf ~ 0.7695 . (42)

At the close-packing density, the system forms a triangular crystal.
In the Sinai billiard, it is well known that there exists different kinds of regimes according to the dynamics of the
particles. As a function of the density n, we observe three regimes:
V3

e The infinite-horizon regime: At the low densities 0 < n < %, the particles can move in free flight over

arbitrarily large distances. In this regime, the self-diffusion coefficient is infinite. (See Fig. 6.)

FIG. 6: Typical configuration of the system in the infinite-horizon regime.

e The finite-horizon regime: For the intermediate densities \/Tg < n < ng, the free flights between the collisions

are always bounded by a finite distance of the order of the interdisk distance d. Therefore, the horizon is finite
and the self-diffusion coefficient is positive and finite. (See Fig. 7.)

FIG. 7: Typical configuration of the system in the finite-horizon regime.

e The localized regime: At the highest densities n., < n < nmax, the images of the disk overlap each other in the
billiard so that the relative motion of the particles is localized in bounded regions. Therefore, the self-diffusion
coefficient vanishes. (See Fig. 8.)

7

e

2

.

\\1\\

FIG. 8: Typical configuration of the system in the localized regime.

We notice that Figs. 6, 7 and 8 are not depicted at the same scale since the disk diameter is fixed to unity (o = 1)
and it is the interdisk distance d that varies.
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The infinite- and finite-horizon regimes extend over the densities 0 < n < n... The localized regime corresponds
to the densities n¢ < n < Npax. The following figure 9 shows the different regimes in the hexagonal geometry. The
remarkable feature of the hexagonal geometry is that there exists a finite-horizon regime which is not localized, in
contrast to the square geometry (see below).

fluid phase solid phase

0 0.433 n, 0.770
=0.577

finite localized

infinite horizon . .
te horizo horizon regime

FIG. 9: The different dynamical regimes and thermodynamic phases of the model in the hexagonal geometry versus the density
n.

2. Square geometry

In the square geometry, the volume is V = ||e x €| = L? and the critical density is:
e = 0.5, (43)

which is the density of the transition between the infinite-horizon and the localized regimes. The close-packing density
is equal to:

Nmax = 1. (44)

In Fig. 10, we have depicted the different regimes in the square geometry. In the square geometry, there also exist
nonlocalized and localized regimes, but the horizon is always infinite in the nonlocalized regime. Therefore, it is only
in the localized regime that the horizon is finite in the square geometry. This is an important difference with respect
to the hexagonal geometry.

fluid phase solid phase

\ 4
S

infinite horizon regime localized regime

FIG. 10: The different dynamical regimes and thermodynamic phases of the model in the square geometry versus the density
n.
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IV. PROPERTIES OF THE MODEL
A. Mean free path

The mean free path (l) is the average distance between two successive collisions. It is known that, in two-dimensional
billiards, the mean free path is related to the area A of the billiard and its perimeter £ according to [17]

TA
) =—. 45
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In the different regimes, the mean free path is given by
e hexagonal geometry:
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0
0.5 0.55 0.6 0.65 0.7 0.75
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o
)

FIG. 11: Theoretical (continuous line) and numerical (dots) values of the mean free path versus the density n in the hexagonal
geometry.

We show in Figs. 11 and 12 the excellent agreement between the above expressions and the values obtained by
numerical simulations. The break observed in Figs. 11 and 12 between the nonlocalized and localized regimes can be
explained thanks to Eq. (45). Indeed, at the critical density ne, the disks form a horn. Above criticality, the horn
becomes a corner with a finite angle so that the perimeter £ decreases very fast. But, on the other hand, the area 4
remains relatively constant. Therefore the ratio % increases with n until this effect disappears. At higher densities,

the mean free path decreases again.

B. Pressure and the different phases of the model

The hydrostatic pressure allows us to interpret the different regimes in terms of thermodynamic phases. The
pressure can be calculated in terms of the time average of the Helfand moment as shown in Appendix C. In the
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FIG. 12: Theoretical (continuous line) and numerical (dots) values of the mean free path versus the density n in the square
geometry.

two-disk model with N = 2 and d = 2, the pressure is given by
PV =kgT + R, (46)

where the rest can be calculated according to Eq. (C8) as

(Ap{” 1)

h= 4<At071,c> ’

(47)

where (At._1 ) is the mean intercollisional time. If we denote by #(©) the angle between the velocity at collision and
the normal to the disk of the Sinai billiard, the average in the numerator becomes

(AP rly = m v o (cos () (48)

o being the diameter of the disks. In the case the total momentum vanishes, the velocity v of the trajectory in the
billiard is related to the relative momentum p, the energy, and the temperature by
p2 p2 v mv?

E=kgT =2 =P 1 _ 4

so that v = 2p/m. At collision, sin $() is uniformly distributed in the interval [—1,+1] so that

(cos ¢©)) = % . (50)
On the other hand, the mean intercollisional time of the billiard is related to the mean free path (I) and the speed
v = |[v]l by

l
(Ater) =2 (51)
v
Gathering the results, we obtain the rest as
Tomuv? To
R=—7+—=—=kpT. 52
16() 4y " (52)

Accordingly, the hydrostatic pressure of the model is given by

PV = kpT (1 + I{;) = kT (1 + Zj) . (53)
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In our work, we introduce the reduced pressure defined as

PV o ol
7(N_1)kBT—1+M—1+m. (54)

. v
P*= gP N

In Figs. 13 and 14, the reduced pressure is depicted as a function of the density and we observe the manifestation
of a phase transition around the critical density. The hard-ball systems are known to present a fluid-solid phase
transition that we here already observe in the two-disk model.

At low density, the fictitious particle of the Sinai billiard can diffuse in the whole lattice. This means that the
two disks move over arbitrarily large distances one with respect to the other, which is a feature of a fluid phase. In
contrast, at high density, the fictitious particle is trapped between three (or four) disks and its motion is reminiscent
of the vibration of atoms in a solid. Of course, it is not really a vibration since the disks bounce in a chaotic motion
because of the elastic collisions whereas, in a solid, the atoms have quasi-harmonic oscillations around their equilibrium
position. Nevertheless, we are in the presence of a solid phase because the translational invariance is broken. Indeed,
the motion is no longer ergodic because the motion now is confined into one among several phase-space domains of
the energy shell.

A phase transition occurs between the fluid and solid phases. At the critical density n¢,, the pressure has a
maximum. Above n,, the pressure decreases, reaches a minimum at a value n,, > n.,, before increasing again. For
Ne < n < nl., the compressibility would be negative so that this state would be unstable from a thermodynamic
viewpoint. This suggests a Maxwell construction to determine a fluid-solid coexistence in the interval of densities
np < n < ng with ng < ne and n., < ng. The values which would delimit this small coexistence interval in a
thermodynamic interpretation of the transition would be given by

e hexagonal geometry: np = 0.57+0.01,
ng = 0.60 £0.01, (55)

and

e square geometry: np = 0.491+0.01,
ng = 0.55£0.01, (56)

(see Figs. 9 and 10). In the square geometry, the horizon is infinite in the fluid phase. In the hexagonal geometry,
the horizon may also be finite in the fluid phase, which leads to finite viscosity coefficients in the fluid phase of this
model as shown in the following.

12\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0 I N ‘ I ‘ I
0.55 0.6 0.65
density
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n
(=N
;N

FIG. 13: Theoretical (continuous line) and numerical (dots) values of the reduced pressure P* versus the density n in the
hexagonal geometry.
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FIG. 14: Theoretical (continuous line) and numerical (dots) values of the reduced pressure P* versus the density n in the
square geometry.

V. VISCOSITY IN THE TWO-HARD-DISK MODEL

A. The Helfand moment in the two-hard-disk model

In our model defined with Egs. (34) and (35) and with a vanishing total momentum P = 0, the forces obey

F, = —F; = F and the microscopic current can be written in relative coordinates as
Lfaﬂﬁj+mm, (57)

where r is the smallest distance between the disks 1 and 2. Following the minimum image convention the position
vector presents discontinuities because of the passages of the relative position through a boundary, after which it is
reinjected into the cell at the opposite boundary. We denote the vectors normal to the boundaries of the unit cell by

Ci=a,
c; =-—a,

hexagonal geometry : zi : El; 7 (58)
cs=b—a,
cg=a—Db,

and
ci=a,
square geometry : Ei i g 2,1 ’ (59)

cy=—-b.

In order to satisfy the minimum image convention, the relative position undergoes jumps by vectors which are the
vectors normal to the unit cell so that Ar(®) = —c,, where wg denotes the label of the boundary crossed by the
particle at the s*" passage at time t,. In these notations, Hamilton’s equations take the form

dr _ 2p _ _
{ dt m Es C‘-Us 6(t ts) ) (60)

dp _
E—F'

In this periodic system, the expression for the Helfand moment is given by a reasoning similar to the one leading
to Eq. (16). We obtain:

Gij(t) = pi(t) 75 (1) + Y pilts) coy Ot = ts) - (61)
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Finally, the viscosity coefficients have the expressions:

Nij,kl = tgmoo % <Z pz(ts) Cuyj Z pk(ts’) Cwsll> - <Z pz(ts) Cwsj> < Z pk(ts’) Cwszl> . (62)

ts<t ty <t ts<t ty <t

Let us remark that the terms p;(t) r;(t) do not appear in this relation because they do not contribute to the viscosity
coefficients. Indeed, the relative position r(¢) and momentum p(¢) remain bounded in the course of time and their
contribution disappears in the limit t — oo.

In the following, the numerical results are presented in terms of a reduced viscosity tensor which is defined by

_ MNijkl

o= b 63
nZJ,lcl QW ( )

B. Hexagonal geometry

In the hexagonal geometry the fourth-order tensor of viscosity is isotropic. Indeed, since the system is invariant
under rotations by %, we obtain the relation 7.4 4y = Nex,ze — 2 Nay,ey Which implies the full rotation invariance of
the viscosity tensor. We depict in Figs. 15 and 16 the results obtained for the reduced viscosities (n*, ¢*) and the
relation (28) is checked in Fig. 17.
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FIG. 15: Shear viscosity coefficient ™ versus the density in the hexagonal geometry. The part in dashed line corresponds to the
density in which the coefficient would not exist in the limit ¢ — oo because the horizon is infinite. The long dashed vertical lines
separate the different regimes: on the left-hand side, the horizon-infinite regime (fluid phase); at the center, the horizon-finite
regime (fluid phase); and on the right-hand side, localized regime (solid phase).

In the infinite-horizon regime, the trajectory can present arbitrarily large displacements in the system without
undergoing any collision. Accordingly, the variance of the Helfand moment G, increases faster than linearly as
t logt, which implies an infinite viscosity coefficient after averaging over an infinite time interval. However, the factor
logt generates a so weak growth that it does not manifest itself much over the finite time of the simulation. This is
the reason why we obtain finite values for the viscosity coefficients in Figs. 15 and 16. However, these values are only
indicative since they should be infinite, strictly speaking.

On the other hand, in the finite-horizon regime, the variance of the Helfand moment has a strictly linear increase
in time and the viscosity coefficients are finite and positive. This is the result of a central-limit theorem which holds
in the finite-horizon regime of the hexagonal geometry, as can be proved by considerations similar to those developed
by Bunimovich and Spohn [10]. We observe in Fig. 15 that the viscosity has a diverging singularity at the critical

density (ne = ﬁ) which corresponds to the fluid-solid phase transition. We shall explain below the origin of this

3
singularity.



17

7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

bulk viscosity coefficient

o b1 L L
0.5 0.55 0.6 0.65 0.7

density

FIG. 16: Bulk viscosity coefficient ¢* versus the density in the hexagonal geometry.
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FIG. 17: Tensor element 7, ., of shear viscosity versus the density in the hexagonal geometry. The dots represent the results
of the relation (28): 73, 4, = % (n;x,xac - n;w,yy). The continuous line corresponds to the data of Fig. 15.

Finally, in the localized regime corresponding to the solid phase, the viscosity is finite and positive, and decreases
when the density increases until the maximum density.

C. Square geometry

In the square geometry, the fourth-order viscosity tensor is not isotropic. Indeed, the tensor is transformed by the
matrix R;;(¢) of rotation by an angle ¢ into

Nij ki (0) = Riir (@) Rjjr(0) Ry (0) Ry (@) 1irje i (0) (64)

For example, if ¢ = 7, we have:
[M22,22(0) + Naa,yy (0) + 2 Nay,ay (0)]

; [Ne,22(0) = Tz 4y (0)] (65)
% [nmz,m (0) + Nxz,yy 0)] — nxy,zy(o) .

nm,rz(%) =
77xy7wy(g)
s
14

)=

nmx,yy(
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Since the system is not isotropic, one more viscosity coefficient is required beside the shear and bulk viscosities.
Therefore, we have to evaluate the three independent tensor elements 7,4 24, Nzy,ay> Naz,yy Which are depicted in Figs.
18 and 19 with respect to two different axis frames: in the first one the axes are parallel to the sides of the square
(¢ = 0) and, in the second one, they form an angle of 45 degrees with respect to the lattice (¢ = 7). Figure 19 shows
that the relations (65) are well satisfied between the elements of the viscosity tensor.

(@) (b) (©
g T T T ] : T T T ] 1uf T T T
251 = - e
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FIG. 18: Square geometry: The three independent tensor elements (a) 1yz 225 (b) Maz,yy»> (€) Moy, 2y for ¢ = 0.
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FIG. 19: Square geometry: The three independent tensor elements (a) 734 22, (b) Mia,yy» (€) Nay,ey for @ = Z. The continuous
line corresponds to the results obtained numerically and the dots to the values obtained by the relations (65).

In the square geometry, Bunimovich and Spohn have proved a central-limit theorem for viscosity in the localized
regime which coincides with the solid phase above the critical density [10]. In this range of density, the viscosity
coefficient is thus guaranteed to be positive and finite.

In the fluid phase, the horizon is infinite and the viscosity is infinite because of a growth as tlogt of the variance
of the Helfand moment for a reason similar as in the hexagonal geometry. In our numerical simulation over a finite
time interval, the viscosity takes finite values because the logarithmic growth is very slow.

An important difference with respect to the hexagonal geometry is the absence of a singularity of the viscosity
coefficient 7y, ., (0) at the phase transition in the square geometry. However, such a singularity still appears in the
square geometry in the coefficients 7y, .. (0), 1y, ,,(0), and 0y, .. (7).

Moreover, in the solid phase, the coefficient 7}, ., (0) increases with the density, as explained here below.

D. Explanation of the numerical observations
1. Solid phase

The behavior of the viscosity tensor is clearly different in the two geometries. In this section, we explain these
differences by comparing the topology of the trajectories in both geometries, since these trajectories form the basis of
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the evolution of the Helfand moment. More precisely, we will compare the behavior of 73, ., between the hexagonal
and square geometries for ¢ = 0. This viscosity coeflicient is given by

# * Gy (1)
{nxy,xy = Nyzyz ™~ % ’ <ny(t)> =0, (66)

yz Zs Uy(tS) Cosz s

where vy (t5) is the y-component of the velocity at the time ¢4 of the jump.

When the density tends to the closed-packing density, the accessible domain of the particles tends to a perfect
triangle in the hexagonal geometry. On the other hand, in the square geometry, it tends to a perfect square. This
difference is at the origin of the different behaviors of the 7y, ., in both lattices.

FIG. 20: Part of a typical trajectory in the square geometry when the density tends to the closed-packing density.

First, let us consider the case of the square geometry. In Fig. 20, we depict a typical trajectory of the fictitious
particle moving in the Sinai billiard. We observe that this trajectory presents a regular motion between two opposite
“walls” (these walls are made of parts of the fixed hard disks in the billiard). At the limit where the billiard is a perfect
square, the trajectories will bounce back and forth in a regular motion. Indeed the square billiard is an integrable
system.

FIG. 21: Geometry and notation for the boundaries in the case of the square geometry at high density.

As we have seen before, the evolution of the Helfand moment along the trajectories is determined by the passages
through the boundaries (see Fig. 21). Both horizontal boundaries (3 and 4) do not contribute to the evolution of G,
since the z-component of the normal vectors to these boundaries equals zero. Therefore, only the passages through
the vertical boundaries contribute to the Helfand moment in the square geometry.

To understand the behavior of the Helfand moment, let us take a small part of the typical trajectory drawn in Fig.
20 (see Fig. 22). First, let us consider the part denoted by the letter a in Fig. 22. This one crosses the boundary in
the direction 1 — 2, which means that ¢, is positive (since ¢1, = %) On the other hand, the y-component of the
velocity, vy, is also positive. Therefore, the contribution of the small part a to the evolution of G, is positive.

Now, let us take the part of the trajectory denoted b in Fig. 22. In this case, the particle crosses the boundary
in the direction 2 — 1 and cp, is negative. Since v, is also negative, the product of these two quantities is positive,
and so at each successive crossings of the boundary 1 — 2. Consequently, we obtain a sum of positive terms and the
Helfand moment quickly increases along a trajectory as the one of Fig. 20.

However, the square is not perfect and the walls are still slightly convex. Therefore, after a certain time, the
trajectory shown in Fig. 20 goes into a transient regime shown on the left-hand side of Fig. 23 before another regime
in which the particle collides most often the two other walls (see the right-hand side of Fig. 23).
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FIG. 22: Part of a typical trajectory in the square geometry at high density.

(a) (b)

FIG. 23: Square geometry at high density: The trajectory is depicted (a) during a transient regime before (b) another regime
with most bounces on the two other opposite walls.

With the same reasoning as before, we conclude that the contributions are negative in this new regime and the
Helfand moment decreases during a long time interval.

The evolution of the Helfand moment along the whole trajectory is depicted in Fig. 24 where we observe the
succession of the three types of regimes which we have described here above. We notice that the nearly constant part
corresponds to the transient regime.

The larger is the density the more perfect is the square and the longer the trajectory remains in a particular regime.
Therefore, the Helfand moment can have larger and larger variations, which implies an increase of the coefficient
Nay.zyy (0) Of shear viscosity with density.

In the hexagonal geometry (see Fig. 25), the trajectories present another behavior. We show in Fig. 25 a typical
trajectory in this geometry with a density larger than the critical density. We observe that the trajectory visits the
whole billiard in different directions and therefore goes into very different velocities. Accordingly, the particle crosses
the boundaries with random values of its velocity in contrast to its behavior in the square geometry. Consequently,
the quantity c,_, can be positive at a particular crossing and negative at the next one. Hence the Helfand moment
cannot increase or decrease over long periods as in the square geometry (see Fig. 26). This explains qualitatively
why, in the solid phase, the coefficient 73, ., (0) = n* is much smaller in the hexagonal geometry than in the square
one.

In the square geometry with ¢ = 7, the same arguments as in the hexagonal case explain the decrease of n;ymy(%)
at high density. By the relations between the different elements of the viscosity tensor, we can also understand the
behavior of the other elements in both geometries.

2. Fluid-solid phase transition

In both the hexagonal and square geometries, the two-disk model presents a phase transition. This transition is
reminiscent of the fluid-solid phase transition in the many-disk system where the viscosity coefficient is also singular.
In this regard, the two-disk model can contribute to the understanding of the changes in the transport properties
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FIG. 24: Evolution of the Helfand moment along a typical trajectory in the square geometry at high density.

FIG. 25: Geometry and notation for the boundaries in the case of the hexagonal geometry at high density.

across the fluid-solid phase transition.

We first explain why 7, .., presents a diverging singularity at the critical density in the hexagonal geometry and
not in the square geometry for ¢ = 0. Here again, we compare the topology of the trajectories in both geometries
and the way in which the Helfand moment evolves along these trajectories. At densities close to the critical density,
both geometries present what we call traps.

Figure 27 shows an example of a trap. These traps are particular regions of the billiard where the particle can
remain during a long time interval. Figure 28) depicts typical examples of a particle moving in such traps. When the
particle travels out of the traps, the Helfand moment does not increase quickly in both geometries. Therefore, it is
the presence of the traps which is at the origin of the difference between both geometries.

In the square geometry, the traps do not influence the evolution of G,. Indeed, as we have already mentioned here
above, the passages through the horizontal boundary 3 — 4 do not contribute since cs,, = c4, = 0 (see Fig. 21 for the
definitions of the boundaries in the square geometry). Therefore, the horizontal traps around these boundaries do
not contribute. There remains the vertical traps. When a particle bounces for a long time in one of these traps, ci,
and cp; are not vanishing, but the velocity v, is almost equal to zero so that the vertical traps does not contribute
much either. This implies that both kinds of traps contribute very slightly to the evolution of the Helfand moment.
To conclude the Helfand moment diffuse in the same way as for the other densities and the coefficient 77, ., (0) does
not present any divergence at the fluid-solid transition in the square geometry.

On the other hand, in the hexagonal geometry, the traps along the boundaries making an angle of 30° with respect to
the horizontal are very important for the evolution of G, whereas the vertical traps do not participate significantly.
Figure 29 shows a typical diffusion of the Helfand moment. We observe in Fig. 29 the presence of jumps which
correspond to the passages in the traps like the one drawn on the left-hand side of Fig. 28. Because of these jumps,
the Helfand moment quickly diffuses. Furthermore, the importance of these traps in the hexagonal geometry can also
be understood by comparing the behavior of the Helfand moment as a function of time at densities below and above
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FIG. 26: Hexagonal geometry at high density: (a) Part of a typical trajectory when the density tends to the closed-packing
density. (b) Evolution of the Helfand moment along this typical trajectory.

trap

FIG. 27: Example of traps in which the particles can enter and remain a long time.

the critical one ng,.

We illustrate this point in Fig. 30 where we observe that there are no more jumps above the critical density.
Therefore, G, does not vary much contrary to the case of densities just below n... Above criticality, the size of the
traps decreases so quickly that the contribution of these traps decreases and, thus, the viscosity coefficient n;, ., = 7"
also decreases. By these arguments, we have an explanation for the diverging singularity of the shear viscosity at the
phase transition in the hexagonal geometry.

This results show that, at a fluid-solid phase transition the viscosity coefficients may depend sensitively on the
geometry of the lattice of the solid phase in formation.

E. Viscosity by the method of Alder et al.

We have also verified numerically that our method of calculation of the viscosity based on the Helfand moment
(16) gives the same values as the method of Alder et al. based on the expression (21) [6]. In the two-disk system, this
expression reduces to:

Gis(t) = 3 [2 220 Ao+ A9 () 01t 1) (67)

C

As shown in Fig. 31 for the shear viscosity in the hexagonal geometry, there is an excellent agreement between the
values obtained by both methods, which confirms the exact equivalence of both methods.
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FIG. 28: Particle trapped between two disks very close to each other in the hexagonal geometry. The line joining their centers
either (a) forms an angle with the horizontal or (b) is horizontal.
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FIG. 29: Helfand moment in the hexagonal geometry evaluated along a particular trajectory at a density tending to the critical
density.

VI. VISCOSITY IN SYSTEMS OF N HARD DISKS

In the present section, we apply our Helfand-moment method to systems of N hard disks. Our purpose is to show
that the values of the shear viscosity obtained for the two-hard-disk model are in good agreement with the values for
larger systems, as well as with Enskog’s theory.

Figure 32 depicts the shear viscosity of systems containing from N = 2 up to N = 40 hard disks. For N = 2,
we consider here the hexagonal geometry. For the systems with N = 4-40 disks, the time evolution is simulated by
molecular dynamics with periodic boundary conditions in the square geometry. The viscosity is calculated by the
Helfand-moment method based on Eq. (21).

We observe that, at low densities, the numerical values are in very good agreement between themselves. At higher
densities, differences appear because the fluid-solid transition shifts toward higher densities as the number of disks
increases. For N = 2 disks in the hexagonal geometry, the fluid-solid transition occurs in the interval n = 0.57-0.60,
while it occurs in the interval n = 0.87-0.90 for N = 40. The sharp singularity of viscosity for N = 2 in the hexagonal
geometry is specific to the geometrical constraints of a two-degree-of-freedom system, as explained in the previous
section. Nevertheless, we notice that the decrease of the shear viscosity just above the fluid-solid transition is also the
feature of the large system with N = 40 disks.

Furthermore, the results of our Helfand-moment method are compared with Enskog’s theory. For a fluid of hard
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FIG. 30: Comparison of the evolution of the Helfand moment for two different densities separated by the critical density in the
hexagonal geometry.
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FIG. 31: Shear viscosity n* in the hexagonal geometry calculated by our Helfand moment (16) (continuous line) and the one
of Alder et al. (dots).

disks of mass m and diameter o, Enskog’s theory predicts that the shear viscosity is given by [18]

1
n =10 <Y +2y+3.4916Yy2> , (68)
where
1.022 /m kgT
— . 69
Tlo %0 p ( )

is the Boltzmann value of the shear viscosity, Y is the Enskog factor entering the equation of state as follows:
P=nkgT(1+2yY). (70)

and y = wo?n/4. For the hard-disk fluid, a good approximation of the Enskog factor is given below the fluid-solid
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FIG. 32: Shear viscosity n versus particle density n in fluids at temperature "= 1 with N = 2,4,8,12,16, 20,40 hard disks of
unit mass and diameter. The solid line is Enskog’s value (68). For N = 2, the data are the same as in Fig. 15 except that we
here plot n = 2n* instead of n* as in Fig. 15.

transition by [19]:

7
y— 171V
(I—-y)?

It is known that the Enskog approximation is not good around the fluid-solid transition and at very high densities.
A remark is here in order. It is known [20] that the viscosity coefficient of the infinite hard-disk fluid is diverging
because of long-time tails. However, this divergence is only logarithmic and does not manifest itself in numerical
calculations before extremely long times. This explains why the long-time tails do not spoil the agreement between
the numerical values and Enskog’s theory.
We see in Fig. 32 the good agreement between Enskog’s theory and the numerical values of our Helfand-moment
method at low densities showing the consistency of our results.

(71)

VII. CONCLUSIONS

In this paper, we propose a new expression for the Helfand moment associated with viscosity in molecular dynamics
with periodic boundary conditions. This new Helfand moment takes into account the minimum image convention
at the basis of molecular-dynamics simulations with periodic boundary conditions. In order to satisfy the minimum
image convention, the position coordinates of the particles undergo jumps. These jumps modify both the equations
of motion and the Helfand moment which is given by the time integral of the microscopic current entering the Green-
Kubo formula. As a consequence, the viscosity tensor calculated with our Helfand moment is equivalent to the one
based on the Green-Kubo formula, as proved in Appendix B. In the case of hard-ball systems, we also prove in
Subsec. IID that our method is equivalent to the method by Alder et al. [6]. Moreover, we show in Appendix C that
the hydrostatic pressure can also be calculated thanks to the Helfand moment we propose for molecular dynamics
with periodic boundary conditions. Our new Helfand moment and our proofs bring a solution to the ambiguities and
problems reported by Erpenbeck [9] about the definition of a Helfand moment in a molecular dynamics with periodic
boundary conditions. We think that the Helfand-moment method can be very useful for the numerical calculation of
viscosity because this method has the advantage of being numerically robust.
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We have applied our Helfand-moment method to the numerical calculation of viscosity in systems of hard disks.

In Sec. V, viscosity has been studied in detail in a simple model composed of two hard disks in elastic collision.
This model has already been investigated in the square geometry by Bunimovich and Spohn [10]. In the present
paper, we generalize this model to the hexagonal geometry. First, we show that the fourth-order viscosity tensor is
isotropic in the hexagonal geometry although it is not in the square geometry. Secondly, we show the viscosity can
be positive and finite in the fluid phase of the hexagonal geometry, although it is always infinite in the fluid phase of
the square geometry. The reason is that the horizon of the Sinai billiard driving the dynamics of the two-disk model
is always infinite in the fluid phase of the square geometry although there is a regime with a finite horizon in the fluid
phase of the hexagonal geometry. In an infinite-horizon regime, the viscosity becomes infinite so that, from a physical
point of view, the proof of the existence of a positive and finite viscosity coefficient strictly holds in the hexagonal
two-disk model. In the solid phase, the transport coefficients acquire a different meaning because the spontaneous
breaking of translational invariance modifies the structure of the hydrodynamic modes and the viscosity coefficient
should be reinterpreted in terms of the damping coefficients of the transverse sound modes and of the diffusive modes
[21-23]. We hope to report on this question in a future publication.

The two-disk model presents a phase transition between a fluid and a solid phase. This transition is reminiscent
of the fluid-solid transition in the system composed of many disks. Indeed, the transition manifests itself in the
hydrostatic pressure in a very similar way as in the many-particle system. The hydrostatic pressure can be directly
related to the mean free path in the two-disk model and we can thus explain the manifestation of the transition on the
pressure in terms of the behavior of the mean free path near the transition. In this simple model, the transition can
be understood as a geometrical property of the dynamical system. Indeed, the trajectories are unbounded in the fluid
phase albeit there remain localized in bounded domains in the solid phase where ergodicity is broken. The fluid-solid
transition also manifests itself as a diverging singularity in the viscosity in the two-disk model. We have here shown
that this singularity in the viscosity versus the density may depend sensitively on the geometry of the lattice of the
solid phase in formation.

In Sec. VI, we have extended the calculation of shear viscosity to systems with many disks. The remarkable result is
that the two-disk systems already gives the shear viscosity in quantitative agreement with its values in larger systems,
as well as with Enskog’s theory at moderate densities.

In a companion paper, we report a study of viscosity by the escape-rate method [24]. In this other work, we use
the Helfand moment which we have introduced in the present paper.
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APPENDIX A: MICROSCOPIC DERIVATION OF THE VISCOSITY TENSOR

In this Appendix, we provide a short microscopic derivation of the viscosity tensor.
First, we need the balance equation for the local conservation of momentum. If we define the density of momentum
as

N
) = > pai 8(r o). (A1)

the balance equation is

019 +0;7; =0, (A2)
with 9; = 0/0r;. The microscopic momentum current density is given by
_ :iw 5(r —rg) + - f: Fi(r —rb)/ld)\ Pabi 51 po (V)] (A3)
K a=1 M Yo a#b=1 s 0 dA ’ 7

where r,;,(A) is the parametric equation of a curve joining the particles a and b: rq;(0) = rp and rgp(1) = r,.
The microscopic current associated with viscosity is defined by integrating the momentum current density over the
volume V:

Jij = /VTij(r) dI‘, (A4)
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which is given by Eq. (8). We notice that the hydrostatic pressure is given at equilibrium by
(Jijleq = PV bij , (A5)

if second-order tensors are isotropic in the system of interest.
We suppose that, at the initial time, the fluid is close to the equilibrium and described by the following nonequi-
librium distribution:

P(T) = Peg(I) [1 + 6/g(r) -v(r) dr} = Peq(I)

N

TE Rl (46)
a=1

where Pgq is the equilibrium distribution and (3 is a normalization constant such that

<paz pb]> 5 51] Oap - (A7)

In the microcanonical state, we have that

1 N

ﬁikBT N—-1" (A8)

The aforementioned distribution describes a fluid with a macroscopic velocity field v(r) since the nonequilibrium
average of the momentum density can easily be shown to be given by

<g(r)>noneq = peqv(r) ) (A9)
where
N
Peq m V ’ (AIO)

is the mass density at equilibrium.

The time evolution of the probability density (A6) is ruled by Liouville’s operator given by the Poisson bracket
with the Hamiltonian L = {H,-} or the pseudo-Liouville operator in the case of hard-ball dynamics. This operator
has the effect of replacing the phase-space coordinates I' by I'(—t)

P, —eLtPO {1+ﬂ/ dr] = Peq( 1+5zpa [ra(=0)]| - (A11)

Alternatively, we known that the time evolution of the momentum density is given by Eq. (A2). In this case, the
momentum density should be considered as an observable so that the solution of Eq. (A2) is

g(r,t) = e “g(r,0), (A12)
so that
eMg(r) = g(r,~1) (A13)
is solution of the equation
O gi =0;Tij - (Al4)
Integrating both sides over time we get
t
gl'(I‘, 7t) = gi(I‘,O) +/ dt, 6'j Tij (t/) . (A15)
0

Close to equilibrium, we may consider the time evolution of deviations with respect to the equilibrium. We neglect
terms which are quadratic in the deviations such as the velocity field itself. The time evolution of these deviations is
obtained by considering the nonequilibrium average of the balance equation (A2) for the deviations:

at <5gi>noneq + 6] <6Tij>noneq =0 ) (AIG)
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with
57’@' = Tij — <Tij>eq . (Al?)
The nonequilibrium average of the deviation of the momentum current density is given by

(6735 (1)) noneq = /5Tij(r) P(T,t) dl = ﬂ/dr’(énj(r) (', —t))eq vi(r') . (A18)

We use Eq. (A15) to transform the average as

(0735 (r) gr(r', —t))eq = (0745(r) gr(r',0))eq +/O dt’ (67i5(r,0) 9) 67 (r',))eq (A19)

where we have used the property that 9](7ki)eq = 0 because the equilibrium state is spatially uniform. We notice
that the first term in the right-hand side of Eq. (A19) vanishes because the equilibrium average of an odd power of
particle momenta vanishes. After an integration by part over the velocity field, Eq. (A18) becomes

<(5’7’2]( noneq — 5/(11‘ / dt 57'” 5Tkl(r t)>eq 8l’vk(r’) = _nij,kl 8lvk(r) s (AQO)

where the identification with the viscosity tensor is carried out in the limit ¢ — oo by
Nijgt O(r —1') = 6/ dt’ (67;5(r,0) 671 (1)) eq - (A21)
0

Taking the double volume integral fV dr [, dr’ of both sides of Eq. (A21) and dividing by the volume V, we obtain
the viscosity tensor as

Wi = [ de 0550) 800 (A22)
with
(sJZ](t) = ‘/VdI‘ (STZ‘j(I', t) = Jlj(t) — <Jij>cq s (A23)

Q.E.D.

APPENDIX B: PROOF OF THE EQUIVALENCE BETWEEN GREEN-KUBO AND
EINSTEIN-HELFAND FORMULAS

Our aim is here to deduce the Green-Kubo formula (7) from the Einstein-Helfand formula (14), proving the equiva-
lence between both formulas under the condition that the Helfand moment is defined by Eq. (15) as the time integral
of the microscopic current (8) and the further condition that the time auto-correlation functions decrease fast enough.

We start from the Einstein-Helfand formula (14) with

P = /Ot 5.7,5(r) dr (B1)

dJ;; being defined by Eq. (A23) and supposing for simplicity that 6G;;(0) = 0. Accordingly, we have successively
from Eq. (14) that

B
Mijet = Hm 2TV (6G;(T)0G R (T))

Th—I»r;om / dtl/ dtg 5JZ] tl 6Jkl(t2)>

+T T—1t|/2
T T5e 2TV / dt/lt/2 dr (6Ji5(0)dJpa(t))

!
3
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where we have performed the change of integration variables

t:t27t17
T:tlertz

)

and supposed that
1 +T
Jim /_T dt ¢] (6755 (0)Ta()) = 0,

which requires that the time autocorrelation functions decrease faster than |t|=17¢ with ¢ > 0. Q.E.D.

APPENDIX C: PRESSURE AND HELFAND MOMENT
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(B2)

(B4)

The hydrostatic pressure at equilibrium is given as the mean value of the momentum current density, i.e., as the

mean value of the same microscopic current entering the Green-Kubo relation:
PV = / (Tij)eq dr = (Jij)eq -
\%
The average over the thermodynamic equilibrium state can be replaced by a time average:

1
va = <Jij> = lim — dT Jz] .

t—oo 0

We can here introduce the Helfand moment to obtain the hydrostatic pressure from the Helfand moment as:

PijV == hm 1 [Glj(t) - GU(O)] .

t—o0 t
In the microcanonical equilibrium state we have that

N -1
<pai paj>eq =m kBT T (Sij .

If we assume that the system is isotropic, P;; = P d;; and we obtain

PV =(N-1)ksT + R,

(C1)

(C3)

where the rest R provides the corrections to the law of perfect gases in dense systems. By using Eqgs. (16) and (21),

the virial can be computed alternatively by

R

<21d Z F(rab)'rab>

a#b=1 eq

= t;oo tdZZp Ar(s)et—t)

s a=1

— (c) .
tll>rgo Z AP —te)
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where d is the dimension, r,, = r, — rp, ts are the times of jumps to satisfy the minimum image convention, while
the last expression only holds for hard-ball systems, t. are the collision times, and rfﬁj) =r1,(t.) — rp(te).
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